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Chapter

CATEGORICAL DATA:

Objectives

In this chapter we extend our study of categorical data to several populations.

We will

e discuss independence and association for categori- e describe Fisher’s exact test of independence
cal variables. between two categorical variables.

e describe a chi-square test to assess the independ- e present McNemar’s test to analyze paired categori-
ence between two categorical variables. cal data.

¢ consider the conditions under which a chi-square ¢ calculate relative risk, the odds ratio, and its associ-

test is valid.

Example
10.1.1

ated confidence interval.

0.1 Introduction

In Chapter 9 we considered the analysis of a single sample of categorical data. The
basic techniques we employed were estimation of category probabilities and
comparison of observed category frequencies with frequencies “expected” accord-
ing to a null hypothesis. In this chapter we will extend these basic techniques to
more complicated situations. To set the stage, here are two examples, the first of
which presents an experiment; the second, an observational study.

Migraine Headache Patients who suffered from moderate to severe migraine
headache took part in a double-blind clinical trial to assess an experimental surgery.
A group of 75 patients were randomly assigned to receive either the real surgery on
migraine trigger sites (n = 49) or a sham surgery (n = 26) in which an incision was
made but no further procedure was performed. The surgeons hoped that patients
would experience “a substantial reduction* in migraine headaches,” which we will
label as “success.” Table 10.1.1 shows the results of the experiment.!

Table 10.1.1 Response to migraine surgery
Surgery
Real  Sham |
Substantial reduction Success 41 15
in migraine headaches? No success 8 11
Total 49 26

*“Substantial reduction” means at least a 50 percent reduction in migraine headache frequency, intensity, or
duration when compared with baseline (presurgery) values.
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A natural way to express the results is in terms of percentages, as follows:

41
Of the real surgeries, 19 or 83.7% were successful.

15
Of sham surgeries, 26" 57.7% were successful.

In this study successful reduction in migraine headache was more common
among patients who received the real surgery than among those who received the
sham surgery—83.7% versus 57.7%. Table 10.1.2 provides a summary of the data;
Figure 10.1.1 is a bar chart showing the percentages of successful surgeries for the

two groups. -
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Figure 10.1.1 Bar chart of
migraine surgery data

HIV Testing A random sample of 120 college students found that 9 of the 61 women
in the sample had taken an HIV test, compared to 8 of the 59 men.? These data are
shown in Table 10.1.3.

Table 10.1.3 HIV testing data

Female  Male

HIV test 9 8
No HIV test 52 51
Total 61 59

Of the women 6% = 0.148 or 14.8% had been tested for HIV. Of the men
= 0.136 or 13.6% had been tested for HIV.

These two percentages are nearly identical. [

Tables such as Tables 10.1.1 and 10.1.3 are called contingency tables. The focus
of interest in a contingency table is the dependence or association between the col-
umn variable and the row variable —for instance, between treatment and response
in Tables 10.1.1 and 10.1.3. (The word contingent means “dependent.”) In particular,
Tables 10.1.1 and 10.1.3 are called 2 X 2 (“two-by-two”) contingency tables,
because they consist of two rows (excluding the “total” row) and two columns. Each
category in the contingency table is called a cell; thus,a 2 X 2 contingency table has
four cells.
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We will consider the analysis and interpretation of 2 X 2 contingency tables
before extending the discussion to larger tables.

0.2 The Chi-Square Test for the 2 X 2
Contingency Table

When analyzing a 2 X 2 contingency table it is natural to think of the probability
of an event under either of two conditions being compared. We will find it is useful
to extend the language of probability to include a new concept: conditional
probability.*

Conditional Probability

Recall that the probability of an event predicts how often the event will occur. A
conditional probability predicts how often an event will occur under specified con-
ditions. The notation for a conditional probability is

Pr{E|C}
which is read “probability of E, given C.” When a conditional probability is estimated
from observed data, the estimate is denoted by a hat (“*”); thus,

Pr{E|C)

The following example illustrates these ideas.

Migraine Headache Consider the migraine headache data from Example 10.1.1. The
conditional probabilities of interest are as follows:

Pr{substantial reduction in migraines|real surgery} = Pr{Success|Real}

= probability that a patient will have a substantial reduction in headache
if given the real surgery

Pr{substantial reduction in migraines|sham surgery} = Pr{Success|Sham}

= probability that a patient will have a substantial reduction in headache
if given the sham surgery

The estimates of these conditional probabilities from the data of Table 10.1.1 are

~ 41
Pr(Successs|Real) = i 0.837

and

N 15
Pr(Success|Sham) = 2% 0.577 =

The natural hypothesis to test is that the conditional probabilities associated
with a 2 X 2 table are equal, which is to say that the probability of the event E does
not depend on whether the first condition, C, is present or the second condition,
“not C,” is present.

Hy: Pr{E|C} = Pr{E|not C})

The following example illustrates this null hypothesis.

*Conditional probability is also discussed in optional Section 3.3.
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Migraine Headache For the migraine study of Example 10.1.1, the null hypothesis is

Hy: Pr{Success|Real} = Pr{Success|Sham}
or equivalently

Hy: Pr{Success|Real} = Pr{Success|not Real} =

The Chi-Square Statistic

Clearly, a natural way to test the preceding null hypothesis would be to reject H
if Pr{E|C} and Pr{E |notC} are different by a sufficient amount. We describe a test
procedure that compares Pr{E|C} and Pr{E|notC} indirectly, rather than directly.
The procedure is a chi-square test, based on the test statistic 2 that was introduced
in Section 9.4:

X% _ i (Oi — ez’)2

i=1 €
In the formula, the sum is taken over all four cells in the contingency table. Each o
represents an observed frequency and each e represents the corresponding expect-
ed frequency according to Hy. We now describe how to calculate the e’s.

The first step in determining the e’s for a contingency table is to calculate the
row and column total frequencies (these are called the marginal frequencies) and
also the grand total of all the cell frequencies. The e’s then follow from a simple
rationale, as illustrated in Example 10.2.3.

Migraine Headache Table 10.2.1 shows the migraine data of Example 10.1.1, together
with the marginal frequencies.

Table 10.2.1 Observed frequencies
for migraine study
Surgery
Real Sham  Total
Success 41 15 56
No success 8 11 19
Total 9 26 75

The e’s should agree exactly with the null hypothesis. Because H|, asserts that
the probability of success does not depend on the treatment, we can generate an
estimate of this probability by pooling the two treatment groups; from Table 10.2.1,

. . . 56 .. .
the pooled estimate, based on the marginal totals, is 75 That is, if H is true, then the
two columns “Real” and “Sham” are equivalent and we can pool them together. Our

56
best estimate of Pr{successful outcome} is then the pooled estimate 75 We can then

apply this estimate to each treatment group to yield the number of successful out-
comes expected according to H, as follows:

56
Real surgery group:% X 49 = 36.59 successful outcomes expected

56
Sham surgery group: = X 26 = 19.41 successful outcomes expected
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19
Likewise, the pooled estimate of Pr{a surgery will not be successful} is 75
Applying this probability to the two treatment groups gives

19
Real surgery group:% X 49 = 12.41 unsuccessful outcomes expected

19
Sham surgery group: 75 X 26 = 6.59 unsuccessful outcomes expected

The expected frequencies are shown in parentheses in Table 10.2.2. Note that

the marginal totals for the e’s are the same as for the o’s. m
Table 10.2.2 Observed and expected frequencies
for migraine study
Surgery

Real Sham Total
Success 41 (36.59) 15 (19.41) 56
No success 8 (12.41) 11 (6.59) 19
Total 49 26 75

In practice, it is not necessary to proceed through a chain of reasoning to obtain
the expected frequencies for a contingency table. The procedure for calculating the e’s
can be condensed into a simple formula. The expected frequency for each cell is calcu-
lated from the marginal total frequencies for the same row and column, as follows:

Expected Frequencies in a Contingency Table
_ (Row total) X (Column total)
B Grand total

The formula produces the same calculation as does the rationale given in
Example 10.2.2, as the following example shows.

Migraine Headache We will apply the preceding formula to the migraine data of
Example 10.1.1. The expected frequency of successful outcomes for the real surgery
is calculated from the marginal totals as

56 X 49
e =

75 36.59

Note that this is the same answer obtained in Example 10.2.2. Proceeding simi-
larly for each cell in the contingency table, we would obtain all the e’s shown in
Table 10.2.2. [

Note: Although the formula for y? for contingency tables is the same as given for
goodness-of-fit tests in Section 9.4, the method of calculating the e’s is quite differ-
ent for contingency tables because the null hypothesis is different.

The Test Procedure

Other than the differences noted previously when computing expected counts, the
chi-square test for a contingency table is carried out similarly to the chi-square
goodness-of-fit test. Large values of x? indicate evidence against H,. Critical values
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are determined from Table 9; the number of degrees of freedom for a 2 X 2 contin-
gency table is

df =1

The chi-square test for a2 X 2 table has 1 degree of freedom because, in a sense,
there only is one free cell in the table. Table 10.2.2 has four cells, but once we have de-
termined that the expected cell frequency for the top-left cell is 36.59, the expected
frequency for the top-right cell is constrained to be 19.41, since the top row adds
across to a total of 56. Likewise, the bottom-left cell is constrained to be 12.41, since
the left column adds down to a total of 49. Once these three cells are determined, the
remaining cell, on the bottom right, is constrained as well. Thus, there are four cells in
the table, but only one of them is “free”; once we have used the null hypothesis to de-
termine the expected frequency for one of the cells, the other cells are constrained.

For a 2 X 2 contingency table, the alternative hypothesis can be directional or
nondirectional. Directional alternatives are handled by the familiar two-step proce-
dure, cutting the nondirectional P-value in half if the data deviate from H, in the
direction specified by H,4 (or reporting that the P-value is >0.50 if the data deviate
from H, in the direction opposite to the direction specified by H4). Note that x>
itself does not express directionality; to determine the directionality of the data, one
must calculate and compare the estimated probabilities.

The following example illustrates the chi-square test.

Migraine Headache For the migraine experiment of Example 10.1.1,let us apply a chi-
square test. Given that the experiment involves cranial surgery, so that a Type I error
would be quite serious, a conservative choice of « is called for; we will use @ = 0.01.
We may state the null hypothesis and a directional alternative informally as follows:

Hy: The real surgery is no better than the sham surgery for reducing migraine
headache.

H,: The real surgery is better than the sham surgery for reducing migraine
headache.

Using the notation of conditional probability, the statements are
Hy: Pr{Success|Real} = Pr{Success|Sham}
H 4: Pr{Success|Real} > Pr{Success|Sham}

To check the directionality of the data, we calculate the estimated probabilities
of response:

A 41
Pr{Success|Real} = i 0.837

o 15
Pr{Success|Sham} = %= 0.577

and we note that
Pr{Success|Real} > Pr{Success|Sham]

Thus, the data do deviate from Hj in the direction specified by H 4. We proceed
to calculate the chi-square statistic from Table 10.2.2 as

, (41 = 36.59) . (15 — 19.41)? N (8 — 12.41)? N (11 — 6.59)?
Xs = T 36,59 19.41 1241 6.59
= 6.06

From Table 9 with df = 1, we find that 30, = 5.41 and x{go = 6.63, and so
we have 0.005 < P-value < 0.01. Thus, we reject Hj and find that the data provide
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sufficient evidence to conclude that the real surgery is better than the sham surgery
for reducing migraine headache.

Note that, even though Pr{Reduct10n|Real} and Pr{Reduct10n|Sham} do not
enter into the calculation of X2, the calculation of Pr{Reduct10n|Rea1} and
Pr{Reduct10n|Sham} is an important part of the test procedure; the information
provided by the quantities Pr{Success |Real} and Pr{Success |Sham} is essential for
meaningful interpretation of the results.* [

Computational Notes The following tips are helpful in analyzing a 2 X 2 contin-
gency table:

1. The contingency table format is convenient for computations. For presenting the
data in a report, however, it is usually better to use a more readable form of dis-
play such as Table 10.1.2; some additional examples are shown in the exercises.

2. For calculating x2, the observed frequencies (0’s) must be absolute, rather than
relative, frequencies; also, the table must contain all four cells, so that the sum
of the o’s is equal to the total number of observations.

[llustration of the Null Hypothesis

The chi-square statistic measures discrepancy between the data and the null hypoth-
esis in an indirect way; the sample conditional probabilities are involved indirectly
in the calculation of the expected frequencies. If sample conditional probabilities
are equal, then the value of y? is zero. Here is an example.

Fictitious Migraine Study Table 10.2.3 shows fictitious data for a migraine study similar
to that described in Example 10.1.1.

For the data of Table 10.2.3, the estimated probabilities of successful surgery are
equal:

~ 30
Pr{Success|Real} = 150 = 0.20

A 20
Pr{S Sh =—=10.20
r{Success|Sham} 100
You can easily verify that, for Table 10.2.3, the expected frequencies are equal to
observed frequencies, so that the value of y? is zero. Also notice that the columns of
the table are proportional to each other:

30 20
120~ 80 .
Table 10.2.3 Fictitious data for migraine study
Surgery

Real Sham Total
Success 30 20 50
No success 120 80 200
Total 150 100 250

*It is natural to wonder why we do not use a more direct comparison of Pr{E |C} and Pr{E [notC}. In fact, there
is a test procedure based on a r-type statistic, calculated by dividing (Pr{E |C} - Pr{E [notC}) by its standard
error. This r-type procedure is equivalent to the chi-square test. We have chosen to present the chi-square test
instead, for two reasons: (1) It can be extended to contingency tables larger than 2 X 2;(2) in certain applications
the chi-square statistic is more natural than the -type statistic; some of these applications appear in Section 10.3.
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As the preceding example suggests, an “eyeball” analysis of a contingency table
is based on checking for proportionality of the columns. If the columns are nearly
proportional, then the data agree fairly well with Hy; if they are highly nonpropor-
tional, then the data disagree with H,. The following example shows a case in which
the data agree quite well with the expected frequencies under H,.

HIV Testing The data from Example 10.1.2 show similar percentages of men and
women who had been tested for HIV. The natural null hypothesis is that
Pr{HIV test|Female} = Pr{HIV test|Male} and that the sample proportions differ
only due to chance error in the sampling process. The expected frequencies are
shown in parentheses in Table 10.2.4. The chi-square test statistic is > = 0.035.
From Table 8 with df = 1, we find that X%,o.zo = 1.64. Thus, the P-value is greater
than 0.20 (using a computer yields P-value = 0.85) and we do not reject the null
hypothesis. Our conclusion is that the data provide no significant evidence that
there is a difference in the rates which which men and women (at the college where

the study was conducted) have been tested for HIV. [
Table 10.2.4 Observed and expected frequencies for HIV study
Female Male Total
HIV test 9 (8.64) 8 (8.36) 17
No HIV test 52 (52.36) 51 (50.64) 103
Total 61 59 120

Note that the actual value of y? depends on the sample sizes as well as the
degree of nonproportionality; as discussed in Section 9.4, the value of y? varies
directly with the number of observations if the percentage composition of the data
is kept fixed and the number of observations is varied. This reflects the fact that a
given percentage deviation from H) is less likely to occur by chance with a larger
number of observations.

Exercises 10.2.1-10.2.14

10.2.1 The accompanying partially complete contingency 10.2.2 Proceed as in Exercise 10.2.1 for the following
table shows the responses to two treatments: contingency table:
TREATMENT
TREATMENT : 2
| 2 Response Success 30
Response Success 70 Failure
. Total 300 100
Failure
Total 100 200

10.2.3 Proceed as in Exercise 10.2.1 for the following
contingency table:

(a) Invent a fictitious data set that agrees with the table TREATMENT
and for which x5 = | P
(b) Calculate the estimated probabilities of suc- Response Success 5 20

cess (Pr(Success|Treatment 1) and Pr(Success|
Treatment 2)) a for your data set. Are they equal?

Failure 10
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10.2.4 Most salamanders of the species P. cinereus are
red striped, but some individuals are all red. The all-red
form is thought to be a mimic of the salamander
N. viridescens, which is toxic to birds. In order to test
whether the mimic form actually survives more success-
fully, 163 striped and 41 red individuals of P. cinereus
were exposed to predation by a natural bird population.
After two hours, 65 of the striped and 23 of the red indi-
viduals were still alive.® Use a chi-square test to assess the
evidence that the mimic form survives more successfully.
Use a directional alternative and let & = 0.05.

(a) State the null hypothesis in words.
(b) State the null hypothesis in symbols.

(c) Compute the sample survival proportions for each
group and display the values in a table similar to
Table 10.1.2.

(d) Find the value of the test statistic and the P-value.

(e) State the conclusion of the test in the context of this
setting.

10.2.5 Can attack of a plant by one organism induce
resistance to subsequent attack by a different organism?
In a study of this question, individually potted cotton
(Gossypium) plants were randomly allocated to two
groups. Each plant in one group received an infestation
of spider mites (7etranychus), the other group were kept
as controls. After two weeks the mites were removed and
all plants were inoculated with Verticillium, a fungus that
causes wilt disease. The accompanying table shows the
numbers of plants that developed symptoms of wilt
disease.* Do the data provide sufficient evidence to
conclude that infestation with mites induces resistance to
wilt disease? Use a chi-square test against a directional
alternative following the five steps (a—e) in Problem
10.2.4.Let o = 0.01.

TREATMENT
MITES NO MITES
Response Wilt disease 11 17
No wilt disease 15 4
Total 26 21

10.2.6 It has been suspected that prolonged use of a cel-
lular telephone increases the chance of developing brain
cancer due to the microwave-frequency signal that is
transmitted by the cell phone. According to this theory, if
a cell phone is repeatedly held near one side of the head,
then brain tumors are more likely to develop on that side
of the head. To investigate this, a group of patients were
studied who had used cell phones for a least six months
prior to developing brain tumors. The patients were
asked whether they routinely held the cell phone to a cer-
tain ear and, if so, which ear. The 88 responses (from
those who preferred one side over the other) are shown
in the following table.> Do the data provide sufficient
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evidence to conclude that use of cellular telephones leads
to an increase in brain tumors on that side of the head?
Use a chi-square test against a directional alternative
following the five steps (a—-e) in Problem 10.2.4. Let
a = 0.05.

PHONE HOLDING SIDE

LEFT RIGHT
Brain tumor side Left 14 28
Right 19 27
Total 33 55

10.2.7 Phenytoin is a standard anticonvulsant drug
which unfortunately has many toxic side effects. A study
was undertaken to compare phenytoin with valproate,
another drug in the treatment of epilepsy. Patients were
randomly allocated to receive either phenytoin or
valproate for 12 months. Of 20 patients receiving val-
proate, 6 were free of seizures for the 12 months while 6
of 17 patients receiving phenytoin were seizure-free.

(a) Use a chi-square test to compare the seizure-free
response rates for the two drugs. Let H4 be non-
directional and « = 0.10 following the five steps
(a—e) in Problem 10.2.4.

(b) Do your conclusions in part (a) provide evidence
that valproate and phenytoin are equally effective in
preventing seizures? Discuss.

10.2.8 Estrus synchronization products are used to bring
cows into heat at a predictable time so that they can be
reliably impregnated by artificial insemination. In a study
of two estrus synchronization products, 42 mature cows
(aged 4 to 8 years) were randomly allocated to receive
either product A or product B, and then all cows were
bred by artificial insemination. The table shows how
many of the inseminations resulted in pregnancy.” Use a
chi-square test to compare the effectiveness of the two
products in producing pregnancy following the five steps
(a—e) in Problem 10.2.4. Use a nondirectional alternative
and let « = 0.05.

TREATMENT
PRODUCT A PRODUCT B
Total number 21 21
of cows
Number of cows 8 15
pregnant

10.2.9 Experimental studies of cancer often use strains
of animals that have a naturally high incidence of tu-
mors. In one such experiment, tumor-prone mice were
kept in a sterile environment; one group of mice was
maintained entirely germ free, while another group was
exposed to the intestinal bacterium Eschericbia coli.
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The accompanying table shows the incidence of liver
tumors.

MICE WITH
LIVER TUMORS
TOTAL NUMBER
TREATMENT OF MICE NUMBER  PERCENT
Germ free 49 19 39%
E. coli 13 8 62%

(a) How strong is the evidence that tumor incidence is
higher in mice exposed to E. coli? Use a chi-square
test against a directional alternative following the
five steps (a—e) in Problem 10.2.4. Let & = 0.05.

(b) How would the result of part (a) change if the per-
centages (39% and 62%) of mice with tumors were
the same, but the sample sizes were (i) doubled
(98 and 26)? (ii) tripled (147 and 39)? [Hint: Part (b)
requires almost no calculation.]

10.2.10 In a randomized clinical trial to determine the
most effective timing of administration of chemothera-
peutic drugs to lung cancer patients, 16 patients were
given four drugs simultaneously and 11 patients were
given the same drugs sequentially. Objective response to
the treatment (defined as shrinkage of the tumor by at
least 50%) was observed in 11 of the patients treated
simultaneously and in 3 of the patients treated sequen-
tially.” Do the data provide evidence as to which timing is
superior? Use a chi-square test against a nondirectional
alternative following the five steps (a—e) in Problem
10.2.4. Let a = 0.05.

10.2.11 Physicians conducted an experiment to investi-
gate the effectiveness of external hip protectors in pre-
venting hip fractures in elderly people. They randomly
assigned some people to get hip protectors and others to
be the control group. They recorded the number of hip
fractures in each group.'’ Do the data in the following
table provide sufficient evidence to conclude that hip
protectors reduce the likelihood of fracture? Use a chi-
square test against a directional alternative following the
five steps (a—e) in Problem 10.2.4. Let & = 0.01.

TREATMENT
HIP PROTECTOR CONTROL
Response Hip fracture 13 67
No hip fracture 640 1081
Total 653 1148

10.2.12 A sample of 276 healthy adult volunteers were
asked about the variety of social networks that they were
in (e.g., relationships with parents, close neighbors, work-
mates, etc.). They were then given nasal drops containing
a rhinovirus and were quarantined for five days. Of the

123 subjects who were in five or fewer types of social
relationships 57 (46.3%) developed colds. Of 153 who
were in at least six types of social relationships 52
(34.0%) developed colds.!! Thus, the data suggest that
having more types of social relationships helps one devel-
op resistance to the common cold. Determine whether
this difference is statistically significant. That is, use a chi-
square test to test the null hypothesis that the probability
of getting a cold does not depend on the number of social
relationships a person is in following the five steps (a—e)
in Problem 10.2.4. Use a nondirectional alternative and
let « = 0.05.

10.2.13 The drug ancrod was tested in a double-blind
clinical trial in which subjects who had strokes were ran-
domly assigned to get either ancrod or a placebo. One
response variable in the study was whether or not a
subject experienced intracranial hemorrhaging.!” The
data are provided in the following table. Use a chi-square
test to determine whether the difference in hemorrhag-
ing rates is statistically significant following the five steps
(a—e) in Problem 10.2.4. Use a nondirectional alternative
and let « = 0.05.

TREATMENT
ANCROD PLACEBO
Hemorrage? Yes 13 5
No 235 247
Total 248 252

10.2.14 Do women respond to men’s solicitations more
readily during the fertile phase of their menstrual cycles?
In a study of this question each of two hundred 18- to
25-year-old women who were walking alone in a city
were approached by an attractive 20-year-old man who
solicited the woman’s telephone number. Previous
research suggested that during the fertile phase of her
menstrual cycle a woman would be more receptive to this
kind of request than at other times. Of 60 women who
were in the fertile phase of their cycles 13 gave out their
phone numbers and 47 refused. The corresponding num-
bers for the 140 women not in the fertile phase of their
cycles were 11 and 129.!3 The data are summarized in the
following table. Use a chi-square test to determine
whether the difference in success rates provides signifi-
cant evidence in favor of an appropriate directional alter-
native, using o = 0.02 following the five steps (a—e) in
Problem 10.2.4.

PHASE

FERTILE NOT

Success? Yes 13 11
No 47 129

Total 60 140
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10.3 Independence and Association in the 2 X 2
Contingency Table

The 2 X 2 contingency table is deceptively simple. In this section we explore further
the relationships that it can express.

Two Contexts for Contingency Tables

A 2 X 2 contingency table can arise in two contexts, namely:
1. Two independent samples with a dichotomous observed variable
2. One sample with two dichotomous observed variables

The first context is illustrated by the migraine data of Example 10.1.1, which can
be viewed as two independent samples—the real surgery group and the sham surgery
group—of sizes n; = 49 and n, = 26. The observed variable is success (or failure) of
the surgery. Any study involving a dichotomous observed variable and completely ran-
domized allocation to two treatments can be viewed this way. The second context is il-
lustrated by the HIV data of Example 10.1.2, which can be viewed as a single sample
of n = 120 students, observed with respect to two dichotomous variables—sex (male
or female) and HIV test status (whether or not the student had been tested for HIV).

The two contexts—two samples with one variable or one sample with two
variables—are not always sharply differentiated. For instance, the HIV data of
Example 10.1.2 could have been collected in two samples—61 women and 59 men—
observed with respect to one dichotomous variable (HIV test status).

The arithmetic of the chi-square test is the same in both contexts, but the state-
ment and interpretation of hypotheses and conclusions can be very different.

Independence and Association

In many contingency tables, the columns of the table play a different role than the rows.
For instance, in the migraine data of Example 10.1.1, the columns represent treatments
and the rows represent responses. Also, in Example 10.1.2 it seems more natural to
define the columnwise conditional probabilities Pr{HIV test|F} and Pr{HIV test| M}
rather than the rowwise conditional probabilities Pr{F|HIV test} and Pr{M|HIV test}.

On the other hand, in some cases it is natural to think of the rows and the
columns of the contingency table as playing interchangeable roles. In such a case,
conditional probabilities may be calculated either rowwise or columnwise, and the
null hypothesis for the chi-square test may be expressed either rowwise or column-
wise. The following is an example.

Hair Color and Eye Color To study the relationship between hair color and eye color in
a German population, an anthropologist observed a sample of 6,800 men, with the
results shown in Table 10.3.1.1

Table 10.3.1 Hair color and eye color

Hair color
Dark Light Total
Eye Dark 726 131 857
Color Light 3,129 2,814 5,943

Total 3,855 2,945 6,800
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The data of Table 10.3.1 would be naturally viewed as a single sample of size
n = 6,800 with two dichotomous observed variables—hair color and eye color. To
describe the data, let us denote dark and light eyes by DE and LE, and dark and
light hair by DH and LH. We may calculate estimated columnwise conditional prob-
abilities as follows:

. 726
Pr{DE|DH) = - ~ 0.19
R 131
Pr{DE|LH} = S ~ 0.04

A natural way to analyze the data is to compare these values: 0.19 versus 0.04.
On the other hand, it is just as natural to calculate and compare estimated rowwise
conditional probabilities:

R 726
Pr{DH|DE} = -2 ~ 0.
r[DH|DE} = (= ~ 0.5
R 3129
PrDH|LE} = -2 ~ 0.53
DHILE} = 5003

Corresponding to these two views of the contingency table, the null hypothesis
for the chi-square test can be stated columnwise as

Hy: Pr{DE|DH} = Pr{DE|LH]}
or rowwise as
Hy: Pr{DH|DE} = Pr{DH|LE}

As we shall see, these two hypotheses are equivalent—that is, any population
that satisfies one of them also satisfies the other. ]

When a data set is viewed as a single sample with two observed variables, the
relationship expressed by Hj is called statistical independence of the row variable
and the column variable. Variables that are not independent are called dependent or
associated. Thus, the chi-square test is sometimes called a “test of independence” or
a “test for association.”

Hair Color and Eye Color The null hypothesis of Example 10.3.1 can be stated ver-
bally as

Hy: Eye color is independent of hair color
or

Hy: Hair color is independent of eye color
or, more symmetrically,

Hy: Hair color and eye color are independent [

The null hypothesis of independence can be stated generically as follows. Two
groups, G and G, are to be compared with respect to the probability of a character-
istic C. The null hypothesis is

H()Z Pr{C | Gl} = Pr{C | Gz}

Note that each of the two statements of H in Example 10.3.1 is of this form.
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To further clarify the meaning of the null hypothesis of independence, in the fol-
lowing example we examine a data set that agrees exactly with H,.

Plant Height and Disease Resistance Consider a (fictitious) species of plant that can be
categorized as short (S) or tall (T) and as resistant (R) or nonresistant (NR) to a
certain disease. Consider the following null hypothesis:

Hjy: Plant height and disease resistance are independent
Each of the following is a valid statement of Hy:

Hy: Pr{R|S} = Pr{R|T}

Hy: Pr{NR|S} = Pr{NR|T}

Hy: Pr{S|R} = Pr{S|NR}

Hy: Pr{T|R} = Pr{T|NR}

A

The following is not a statement of Hy:
5. Hy Pr{R|S} = Pr{NR]|S}

Note the difference between statements 5 and 1. Statement 1 compares two
groups (short and tall plants) with respect to disease resistance, whereas statement 5
is a statement about the distribution of disease resistance in only one group (short
plants); statement 5 merely asserts that half (50%) of short plants are resistant and
half are nonresistant.

Suppose, now, that we choose a random sample of 100 plants from the popula-
tion and we obtain the data in Table 10.3.2.

Table 10.3.2 Plant height and disease resistance
Height
S T Total
Resistance R 12 18 30
NR 28 42 70
Total 40 60 100

The data in Table 10.3.2 agree exactly with Hy; this agreement can be checked in
four different ways, corresponding to the four different symbolic statements of Hy:

1. Pr{R|S} = Pr{R|T)

12 18
20 ~030=o
2. Pr{NR|S} = Pr{NR|T)
28 )
20 - 00=o
3. Pr{S|R} = Pr{S|NR}
L2 =2

30 70
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4. Pr{T|R} = Pr{T|NR}

18 42
30 " 0.60 = 70
Note that the data in Table 10.3.2 do not agree with statement 5:
~ 12 ~ 28
Pr{R|S} = i 0.30 and Pr{NR|S} = 0 - 0.70
0.30 = 0.70 [

Facts about Rows and Columns

The data in Table 10.3.2 display independence whether viewed rowwise or column-
wise. This is no accident, as the following fact shows.

Fact 10.3.1 The columns of a 2 X 2 table are proportional if and only if the rows
are proportional. Specifically, suppose that a, b, ¢, and d are any positive numbers,
arranged as in Table 10.3.3.

Table 10.3.3 A general 2 X 2 contingency table

Total
a b a+b
c d c+d

Total a—+c b+d

Then

b
§=g ifandonlyif%z%

Another way to express this is

a b a c
= if ly if =
P b+d1andony1

a+b c+d

You can easily show that Fact 10.3.1 is true; just use simple algebra. Because of Fact
10.3.1, the relationship of independence in a 2 X 2 contingency table is the same
whether the table is viewed rowwise or columnwise. Note also that the expected
frequencies, and therefore the value of 2, would remain the same if the
rows and columns of the contingency table were interchanged. The following fact
shows that the direction of dependence is also the same whether viewed rowwise or
columnwise.

Fact 10.3.2 Suppose that a, b, ¢, and d are any positive numbers, arranged as in
Table 10.3.3. Then

a b . . a
>7
P b+d1fandonly1f

>
a+b c+d
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Also

a b . . a c
< <
atc S prgtandonlyil s

Note: For more discussion of conditional probability and independence, see
optional Section 3.3.

Verbal Description of Association

Ideas of logical implication are expressed in everyday English in subtle ways. The
following excerpt is from Alice in Wonderland, by Lewis Carroll:

“...youshould say what you mean,” the March Hare went on.

“I do,” Alice hastily replied; “at least—at least I mean what I say—that’s the same
thing, you know.”

“Not the same thing a bit!” said the Hatter. “Why, you might just as well say that ‘I
see what [ eat’ is the same thing as ‘I eat what I see’!”

... “You might just as well say,” added the Dormouse..., “That ‘I breathe when I
sleep’ is the same thing as ‘I sleep when I breathe’!”

“It is the same thing with you,” said the Hatter...

We also use ordinary language to express ideas of probability, conditional prob-
ability, and association. For instance, consider the following four statements:

Color-blindness is more common among males than among females.
Maleness is more common among color-blind people than femaleness.
Most color-blind people are male.

Most males are color-blind.

The first three statements are all true; they are actually just different ways of saying
the same thing. However, the last statement is false.l

In interpreting contingency tables, it is often necessary to describe probabilistic
relationships in words. This can be quite a challenge. If you become fluent in such
description, then you can always “say what you mean” and “mean what you say.”
The following two examples illustrate some of the issues.

Plant Height and Disease Resistance For the plant height and disease resistance study
of Example 10.3.3, we considered the null hypothesis

Hy: Height and resistance are independent.
This hypothesis could also be expressed verbally in various other ways, such as

Hyy: Short and tall plants are equally likely to be resistant.
Hy: Resistant and nonresistant plants are equally likely to be tall.
Hy: Resistance is equally common among short and tall plants. [

Hair Color and Eye Color Let us consider the interpretation of Table 10.3.1. The chi-
square statistic is y> = 314; from Table 9 we see that the P-value is tiny, so the
null hypothesis of independence is overwhelmingly rejected. We might state our
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conclusion in various ways. For instance, suppose we focus on the incidence of dark
eyes. From the data we found that

Pr(DE|DH} > Pr{DE|LH}
that is,

726 131
- =019>_"—— =0.
3855 0.19 2945 0.04

A natural conclusion from this comparison would be

Conclusion 1: There is sufficient evidence to conclude that dark-haired men
have a greater tendency to be dark-eyed than do light-haired men.

This statement is carefully phrased, because the statement
“Dark-haired men have a greater tendency to be dark-eyed.”
is ambiguous by itself; it could mean

“Dark-haired men have a greater tendency to be dark-eyed than do light-
haired men.”

or

“Dark-haired men have a greater tendency to be dark-eyed than to be light-
eyed.”

The first of these statements says that

Pr{DE|DH} > Pr{DE|LH)}
whereas the second says that

Pr{DE|DH} > Pr{LE|DH]}

The second statement asserts that more than half of dark-haired men have dark
eyes. Note that the data do not support this assertion; of the 3,855 dark-haired men,
only 19% have dark eyes.

Conclusion 1 is only one of several possible wordings of the conclusion from the
contingency table analysis. For instance, one might focus on dark hair and find

Conclusion 2: There is sufficient evidence to conclude that dark-eyed men
have a greater tendency to be dark-haired than do light-eyed men.

A more symmetrical phrasing would be

Conclusion 3: There is sufficient evidence to conclude that dark hair is associ-
ated with dark eyes.

However, the phrasing in conclusion 3 is easily misinterpreted; it may suggest some-

thing like
“There is sufficient evidence to conclude that most dark-haired men are dark-
eyed.”

which is not a correct interpretation. [

We emphasize once again the principle that we stated in Section 10.2: The cal-
culation and comparison of appropriate conditional probabilities or Pr’s is an es-
sential part of the chi-square test. Example 10.3.5 provides ample illustration of
this point.
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Exercises 10.3.1-10.3.12

10.3.1 Consider a fictitious population of mice. Each
animal’s coat is either black (B) or grey (G) in color and is
either wavy (W) or smooth (S) in texture. Express each of
the following relationships in terms of probabilities or con-
ditional probabilities relating to the population of animals.

(a) Smooth coats are more common among black mice
than among grey mice.

(b) Smooth coats are more common among black mice
than wavy coats are.

(c) Smooth coats are more often black than are wavy coats.
(d) Smooth coats are more often black than grey.

(e) Smooth coats are more common than wavy coats.

10.3.2 Consider a fictitious population of mice in which
each animal’s coat is either black (B) or grey (G) in color
and is either wavy (W) or smooth (S) in texture (as in
Exercise 10.3.1). Suppose a random sample of mice is
selected from the population and the coat color and tex-
ture are observed; consider the accompanying partially
complete contingency table for the data.

HEIGHT
B G
Texture \%% 50
S
Total 60 150

(a) Invent fictitious data sets that agree with the table
and for which
(i) Pr{W|B} > Pr{W|G}; (ii) Pr{W|B} = Pr{W|G)
In each case, verify your answer by calculating the
estimated conditional probabilities.

(b) For each of the two data sets you invented in part
(a), calculate Pr{B|W}and Pr{B|S}.

(c) Which of the data sets of part (a) has
Pr{B|W} > Pr{B|S}? Can you invent a data set for
which

Pr(W|B} > Pr{W|G} but Pr{B|W} < Pr{B|S}
If so, do it. If not, explain why not.
10.3.3 Men with prostate cancer were randomly assigned
to undergo surgery (n = 347) or “watchful waiting” (no
surgery, n = 348). Over the next several years there were

83 deaths in the first group and 106 deaths in the second
group. The results are given in the table.'®

TREATMENT
SURGERY WW TOTAL
Survival Died 83 106 189

Alive 264 242 | 506
Total 347 348 695

(a) Let D and A represent died and alive, respectively,
and let S and WW represent surgery and watchful
waiting. Estimate Pr{D |S} and Pr{D | WW}.

(b) The value of the contingency-table chi-square statis-
tic for these data is y> = 3.75. Test for a relationship
between the treatment and survival. Use a nondirec-
tional alternative and let @ = 0.05.

10.3.4 In a study of behavioral asymmetries, 2,391
women were asked which hand they preferred to use (for
instance, to write) and which foot they preferred to use
(for instance, to kick a ball). The results are reported in
the table.!’

PREFERRED PREFERRED NUMBER OF
HAND FOOT WOMEN
Right Right 2,012
Right Left 142

Left Right 121
Left Left 116
Total 2,37

(a) Estimate the conditional probability that a woman is
right-footed, given that she is right-handed.

(b) Estimate the conditional probability that a woman is
right-footed, given that she is left-handed.

(c) Suppose we want to test the null hypothesis that
hand preference and foot preference are inde-
pendent. Calculate the chi-square statistic for this
hypothesis.

(d) Suppose we want to test the null hypothesis that
right-handed women are equally likely to be right-
footed or left-footed. Calculate the chi-square statis-
tic for this hypothesis.

10.3.5 Consider a study to investigate a certain sus-
pected disease-causing agent. One thousand people are
to be chosen at random from the population; each indi-
vidual is to be classified as diseased or not diseased and
as exposed or not exposed to the agent. The results are to
be cast in the following contingency table:

EXPOSURE
YES NO

Disease Yes
No

Let EY and EN denote exposure and nonexposure and
let DY and DN denote presence and absence of the dis-
ease. Express each of the following statements in terms of
conditional probabilities. (Note that “a majority” means
“more than half.”)
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(a) The disease is more common among exposed than
among nonexposed people.

(b) Exposure is more common among diseased people
than among nondiseased people.

(c) Exposure is more common among diseased people
than is nonexposure.

(d) A majority of diseased people are exposed.
(e) A majority of exposed people are diseased.

(f) Exposed people are more likely to be diseased than
are nonexposed people.

(g) Exposed people are more likely to be diseased than
to be nondiseased.

10.3.6 Refer to Exercise 10.3.5. Which of the statements
express the assertion that occurrence of the disease is
associated with exposure to the agent? (There may be
more than one.)

10.3.7 Refer to Exercise 10.3.5. Invent fictitious data sets
as specified, and verify your answer by calculating appro-
priate estimated conditional probabilities. (Your data
need not be statistically significant.)

(a) Invent a data set for which
Pr{DY|EY} > Pr{DY|EN}but
Pr{EY|DY} < Pr{EN|DY}
or explain why it is not possible.

(b) Invent a data set that agrees with statement (a) of
Exercise 10.3.5 but with neither (d) nor (e); or, ex-
plain why it is not possible.

(c) Invent a data set for which
Pr{DY|EY} > Pr{DY|EN}but
Pr{EY|DY) < Pr{EY|DN}
or explain why it is not possible.

10.3.8 An ecologist studied the spatial distribution of tree
species in a wooded area. From a total area of 21 acres, he
randomly selected 144 quadrats (plots), each 38 feet square,
and noted the presence or absence of maples and hickories
in each quadrat. The results are shown in the table.'®

MAPLES
PRESENT  ABSENT
Hickories Present 26 63
Absent 29 26

The value of the chi-square statistic for this contingency
table is 2 = 7.96. Test the null hypothesis that the two
species are distributed independently of each other. Use
a nondirectional alternative and let @ = 0.01. In stating
your conclusion, indicate whether the data suggest attrac-
tion between the species or repulsion. Support your inter-
pretation with estimated conditional probabilities from
the data.

10.3.9 Refer to Exercise 10.3.8. Suppose the data for
fictitious tree species, A and B, were as presented in the
accompanying table. The value of the chi-square statistic
for this contingency table is y; = 9.07. As in Exercise
10.3.9, test the null hypothesis of independence and inter-
pret your conclusion in terms of attraction or repulsion
between the species.

SPECIES A
PRESENT  ABSENT
Species B Present 30 10
Absent 49 55

10.3.10 A randomized experiment was conducted in
which patients with coronary artery disease either had
angioplasty or bypass surgery. The accompanying table
shows the incidence of angina (chest pain) among the
patients five years after treatment."

TREATMENT
ANGIOPLASTY BYPASS TOTAL
Angina? Yes 111 74 185
No 402 441 843
Total 513 515 1,028

Let A represent angioplasty and B represent bypass.
(a) Calculate Pr{Yes|A} and Pr{Yes|B).
(b) Calculate Pr{A|Yes} and Pr{A|No}.

10.3.11 Refer to Exercise 10.3.10. Invent a fictitious data
set on coronary treatment and angina for 1,000 patients,
for which Pr{Yes|A} is twice as great as Pr{Yes|B}, but
nevertheless the majority of patients who have angina
also had bypass surgery (as opposed to angioplasty).

10.3.12 Suppose pairs of fraternal twins are examined

and the handedness of each twin is determined; assume

that all the twins are brother—sister pairs. Suppose data

are collected for 1,000 twin pairs, with the results shown

in the following table.?’ State whether each of the follow-

ing statements is true or false.

(a) Most of the brothers have the same handedness as
their sisters.

(b) Most of the sisters have the same handedness as
their brothers.

(c) Most of the twin pairs are either both right-handed
or both left-handed.

(d) Handedness of twin sister is independent of handed-
ness of twin brother.

(e) Most left-handed sisters have right-handed brothers.

SISTER
LEFT RIGHT TOTAL

Brother  Left 15 85 100
Right |135 765 900

Total 150 850 1,000
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0.4 Fisher’s Exact Test (Optional)

In this optional section we consider an alternative to the chi-square test for 2 X 2
contingency tables. This procedure, known as Fisher’s exact test, is particularly
appropriate when dealing with small samples. Example 10.4.1 presents a situation in
which Fisher’s exact test can be used.

ECMO Extracorporeal membrane oxygenation (ECMO) is a potentially life-saving
procedure that is used to treat newborn babies who suffer from severe respiratory
failure. An experiment was conducted in which 29 babies were treated with ECMO
and 10 babies were treated with conventional medical therapy (CMT). The data are
shown in Table 10.4.1.%!

Table 10.4.1 ECMO experiment data
Treatment
CMT ECMO Total
Outcome Die 4 1 5
Live 6 28 34
Total 10 29 39

The data in Table 10.4.1 show that 34 of the 39 babies survived, but 5 of them
died. The death rate was 40% for those given CMT and was 3.4% for those given
ECMO. However, the sample sizes here are quite small. Is it possible that the differ-
ence in death rates happened simply by chance?

The null hypothesis of interest is that outcome (live or die) is independent of
treatment (CMT or ECMO). If the null hypothesis is true, then we can think of the
data in the following way: The two column headings of “CMT” and “ECMO” are
arbitrary labels. Five of the babies would have died no matter which treatment
group they were in; 4 of these babies ended up in the CMT group by chance.

The alternative hypothesis asserts that probability of death depends on treat-
ment group. This means that there is a real difference between CMT and ECMO
survival rates, which accounts for the sample percentages being different.

Thus, a question of interest is this: “If the null hypothesis is true, how likely is it
to get a table of data like Table 10.4.1?” In conducting Fisher’s exact test we find the
probability that the observed table, Table 10.4.1, would arise by chance, given that
the marginal totals—5 deaths and 34 survivors, 10 given CMT and 29 given
ECMO —are fixed. To make this more concrete, suppose the null hypothesis is true
and another experiment is conducted, with 10 babies given CMT and 29 given
ECMO. Further, suppose that 5 of these 39 babies are going to die, no matter which
group they are in. That is, there are 5 babies who are so seriously ill that neither
treatment would be able to save them. What is the probability that 4 of them will be
assigned to the CMT group?

To find this probability, we need to determine the following:

1. The number of ways of assigning exactly 4 of the 5 babies who are fated to die
to the CMT group

2. The number of ways of assigning exactly 6 of the 34 babies who are going to
survive to the CMT group

3. The number of ways of assigning 10 of the 39 babies to the CMT group
The product of (1) and (2), divided by (3), gives the probability in question. =
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Example
10.4.2

Example
10.4.3

Combinations

In Section 3.6 we presented the binomial distribution formula. Part of that formula
is the quantity ,,C; (which in Section 3.6 we called a binomial coefficient). The quan-
tity ,C; is the number of ways in which j objects can be chosen out of a set of n
objects. For instance, the number of ways that a group of 4 babies can be chosen out
of 5 babies is 5Cy. The numerical value of ,C; is given by formula 10.4.1:

n!

WSl = 10.4.1
S ) ( )

where n! (“n factorial”) is defined for any positive integer as
n!l=nn—-1)n—2)...(2)(1)

and 0! = 1.
n!

1(n = 1)!
There are n ways to choose 1 object from a set of n objects. If j = n then we have

For example, if j = 1 then we have ,C| = = n, which makes sense:

.Cn, = —— = 1,since there is only one way to choose all n objects from a set of size .
n

ECMO We can apply formula 10.4.1 as follows.

1. The number of ways of assigning 4 babies to the CMT group from among the

5!
5 who are fated to die is sC; = T 5.

2. The number of ways of assigning 6 babies to the CMT group from among the

34!
o8l 1,344,904.

3. The number of ways of assigning 10 babies to the CMT group from among the

39!
39 total babies is 3yCig = 101291 = 635,745,396.*

34 who are going to survive is 33Cq =

Thus, the probability of getting the same data as those in Table 10.4.1, given that
Cy X 34C 5 X 1344904
the marginal totals are fixed, is > 439(:124 6 = 635745396 0.01058 . [
When conducting Fisher’s exact test of a null hypothesis against a directional
alternative, we need to find the probabilities of all tables of data (having the same
margins as the observed table) that provide evidence as strongly against Hy, in the
direction predicted by H 4, as the observed table.

ECMO Prior to this experiment described in Example 10.4.1, there was evidence
that suggested that ECMO is better than CMT. Hence, a directional alternative
hypothesis is appropriate:

H 4: Pr{death|[ ECMO} < Pr{death|CMT}

The data in the observed table, Table 10.4.1, support H4. There is one other
possible table, shown as Table 10.4.2, that has the same margins as Table 10.4.1 but
which is even more extreme in supporting H 4. Given that 5 of 39 babies died and

*It is evident from this example that a computer or a graphing calculator is a very handy tool when conducting
Fisher’s exact test. This is a statistical procedure that is almost never carried out without the use of technology.
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Table 10.4.2 A more extreme table that could have
resulted from the ECMO experiment
Treatment
CMT ECMO Total
Outcome Die 5 0 5
Live 5 29 34
Total 10 29 5

that 10 babies were assigned to CMT, the most extreme possible result supporting
the alternative hypothesis (that ECMO is better than CMT) is the table in which
none of the ECMO babies die and all 5 deaths occur in the CMT group.

Cs X 3,4,C
The probability of Table 10.4.2 occurring, if H is true, is RRCRAR s 3PN

L X 278256 _ 0.00044. The P-value is th bability of obtaining d 39C110

635745396 . The P-value 1s the probability of obtaining data at least as
extreme as those observed, if Hy is true. In this case, the P-value is the probability of
obtaining either the data in Table 10.4.1 or in Table 10.4.2, if H is true. Thus,
P-value = 0.01058 + 0.00044 = 0.01102. This P-value is quite small, so the experi-
ment provided strong evidence that H is false and that ECMO really is better
than CMT. [

Comparison to the Chi-Square Test

The chi-square test presented in Section 10.2 is often used for analyzing 2 X 2 con-
tingency tables. One advantage of the chi-square test is that it can be extended to
2 X 3 tables and other tables of larger dimension, as will be shown in Section 10.6.
The P-value for the chi-square test is based on the chi-square distribution, as the
name implies. It can be shown that as the sample size becomes large, this distribu-
tion provides a good approximation to the theoretical sampling distribution of the
chi-square test statistic y2. If the sample size is small, however, then the approxima-
tion can be poor and the P-value from the chi-square test can be misleading.

Fisher’s exact test is called an “exact” test because the P-value is determined
exactly, using calculations such as those shown in Example 10.4.2, rather than being
based on an asymptotic approximation. Example 10.4.4 shows how the exact test
and the chi-square test compare for the ECMO data.

ECMO Conducting a chi-square test on the ECMO experiment data in Table 10.4.1
gives a test statistic of
(4 — 1.28)° L a- 3.72) G 8.72) N 25.28)*

1.28 3.72 8.72 25.28

X:=

= 8.89

The P-value (using a directional alternative) is 0.0014. This is quite a bit smaller
than the P-value found with the exact test of 0.01102. [

Nondirectional Alternatives and the Exact Test

Typically, the difference between a directional and a nondirectional test is that the
P-value for the nondirectional test is twice the P-value for the directional test
(assuming that the data deviate from Hj in the direction specified by Hy).
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Table
15 3
13 10
16 2
12 11
17 1
11 12
18 0
10 13

Figure 10.4.1

Table

5 13
23 0

6 12
22 1

7 11
21 2

8 10
20 3

9 9
19 4
10 8
18 5

Figure 10.4.2

Example
10.4.5

Probability

0.05298
0.01174
0.00138

0.00006

Probability

0.00000
0.00002
0.00046
0.00440
0.02443

0.08356

For Fisher’s exact test this is not true. The P-value when H 4 is nondirectional is not
found by simply doubling the P-value from the directional test. Rather, a generally
accepted procedure is to find the probabilities of all tables that are as likely or
less likely than the observed table. These probabilities are added together to get the
P-value for the nondirectional test.* Example 10.4.5 illustrates this idea.

Flu Shots A random sample of college students found that 13 of them had gotten
a flu shot at the beginning of the winter and 28 had not. Of the 13 who had a flu
shot, 3 got the flu during the winter. Of the 28 who did not get a flu shot, 15 got the
flu.22 These data are shown in Table 10.4.3. Consider the null hypothesis that
the probability of getting the flu is the same whether or not one gets a flu shot.
The probability of the data in Table 10.4.3, given that the margins are fixed, is
1563 X 5Cho = 0.05298.
41C13

Table 10.4.3 Flu shot data
No shot Flushot Total

Flu?  Yes 15 3 18
No 13 10 23
Total 28 13 41

A natural directional alternative would be that getting a flu shot reduces one’s
chance of getting the flu. Figure 10.4.1 shows the obtained data (from Table 10.4.3)
along with tables of possible outcomes that more strongly support H4. The proba-
bility of each table is given in Figure 10.4.1, as well.

The P-value for the directional test is the sum of the probabilities of these
tables: P-value = 0.05298 + 0.01174 + 0.00138 + 0.00006 = 0.06616.

A nondirectional alternative states that the probability of getting the flu
depends on whether or not one gets a flu shot but does not state whether a flu shot
increases or decreases the probability. (Some people might get the flu because of the
shot, so it is plausible that the overall flu rate is higher among people who get the
shot than among those who don’t—although public health officials certainly hope
otherwise!)

Figure 10.4.2 shows tables of possible outcomes for which the flu rate is higher
among those who got the shot than among those who didn’t. The probability of each
table is given, as well. The first five tables all have probabilities less than 0.05298,
which is the probability of the observed data in Table 10.4.3, but the probability of
the sixth table is greater than 0.05298. Thus, the contribution to the P-value from
this set of tables is the sum of the first five probabilities: 0.00000 + 0.00002
+ 0.00046 + 0.00440 + 0.02443 = 0.02931. Adding this to the P-value for the direc-
tional test of 0.06616 gives the P-value for the nondirectional test: P-value = 0.06616
+ 0.02931 = 0.09547.

As this example shows, the calculation of a P-value for Fisher’s exact test is
quite cumbersome, particularly when the alternative is nondirectional. It is highly
recommended that statistics software be used to carry out the test. m

*There is not universal agreement on this process. The P-value can be taken to be the sum of the probabilities of
all “extreme” tables, but there are several ways to define “extreme.” One alternative to the method presented
here is to order tables according to the values of 2 and to count a table as extreme if it has a value of y? that is
at least as large as the y? found from the observed table. Another approach is to order the tables according to
|[p1 — psl- These methods will sometimes lead to a different P-value than the P-value being presented here.
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10.4.1 Consider conducting Fisher’s exact test with the
following fictitious table of data. Let the null hypothesis
be that treatment and response are independent and let
the alternative be the directional hypothesis that treat-
ment B is better than treatment A. List the tables of pos-
sible outcomes that more strongly support H 4.

TREATMENT
A B TOTAL
Outcome Die 4 2 6
Live 10 14 24
Total 14 16 30

10.4.2 Repeat Exercise 10.4.1 with the following table
of data.

TREATMENT
A B TOTAL
Outcome Die 5 3 8
Live 12 13 25
Total 17 16 33

10.4.3 In a randomized, double-blind clinical trial, 156
subjects were given an antidepressant medication to help
them stop smoking; a second group of 153 subjects were
given a placebo. Insomnia was more common in the anti-
depressant group than in the placebo group; Fisher’s
exact test of the insomnia data gave a P-value of 0.008.3
Interpret this P-value in the context of the clinical trial.

10.4.4 (Computer exercise) A random sample of 99 stu-
dents in a Conservatory of Music found that 9 of the
48 women sampled had “perfect pitch” (the ability to
identify, without error, the pitch of a musical note), but
only 1 of the 51 men sampled had perfect pitch.>*

Conduct Fisher’s exact test of the null hypothesis that
having perfect pitch is independent of sex. Use a direc-
tional alternative and let @ = 0.05. Do you reject Hy?
Why or why not?

10.4.5 Consider the data from Exercise 10.4.4. Conduct a
chi-square test and compare the results of the chi-square
test to the results of Fisher’s exact test.

10.4.6 (Computer exercise) The growth factor pleiotrophin
is associated with cancer progression in humans. In an
attempt to monitor the growth of tumors, doctors meas-
ured serum pleiotrophin levels in patients with pancreat-
ic cancer and in a control group of patients. They found
that only 2 of 28 control patients had serum levels more
than two standard deviations above the control group
mean, whereas 20 of 41 cancer patients had serum levels
this high.?> Use Fisher’s exact test to determine whether
a discrepancy this large (2 of 28 versus 20 of 41) is likely
to happen by chance. Use a directional alternative and let
a = 0.05.

10.4.7 (Computer exercise) A group of 225 men with
benign prostatic hyperplasia were randomly assigned to
take saw palmetto extract or a placebo in a double-blind
trial. One year into the experiment 45 of the 112 men in
the saw palmetto group (40%) thought they were taking
saw palmetto, compared to 52 of the 113 men in the
placebo group (46%).2° Is this difference consistent with
chance variation? Conduct Fisher’s exact test using a
nondirectional alternative.

10.4.8 (Computer exercise) An experiment involving
subjects with schizophrenia compared “personal
therapy” to “family therapy.” Only 2 out of 23 subjects
assigned to the personal therapy group suffered psy-
chotic relapses in the first year of the study, compared
to 8 of the 24 subjects assigned to the family therapy
group.?” Is this sufficient evidence to conclude, at the 0.05
level of significance, that the two types of therapies are
not equally effective? Conduct Fisher’s exact test using a
nondirectional alternative.

0.5 Ther X k Contingency Table

The ideas of Sections 10.2 and 10.3 extend readily to contingency tables that are
larger than 2 X 2. We now consider a contingency table with  rows and k columns,
which is termed an r X k contingency table. Here is an example.

Example
10.5.1

Plover Nesting Wildlife ecologists monitored the breeding habitats of mountain
plovers for three years and made note of where the plovers nested. They found 66

nests on agricultural fields (AF), 67 nests in shortgrass prairie dog habitat (PD), and
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20 nests on other grassland (G). The nesting choices varied across the years for these
153 sampled plover broods; Table 10.5.1 shows the data.?8

Table 10.5.1 Plover nest locations across three years
Year
Location 2004 2005 2006 Total
Agricultural field (AF) 21 19 26 66
Prairie dog habitat (PD) 17 38 12 67
Grassland (G) 5 6 9 20
Total 43 63 47 153

To compare the distributions in the three locations, we can calculate the
columnwise percentages, as displayed in Table 10.5.2. (For instance, in the 2004

21
sample o 48.8%, of the nests were on agricultural fields.) Inspection of Table

10.5.2 shows some clear differences among the three percentage distributions
(columns), with prairie dog habitat being much more common in 2005 than in the

other years. m
Table 10.5.2 Percentage distributions of plover nests by year
Year

Location 2004 2005 2006
Agricultural field (AF) 48.8 30.2 553
Prairie dog habitat (PD) 39.5 60.3 25.5
Grassland (G) 11.6 9.5 19.1
Total 99.9 100.0 99.9"
“The sums of the 2004 and 2006 percentages differ from 100% due
to rounding.

Figure 10.5.1 is a bar chart of the data, which gives a visual impression of the

distributions.
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The Chi-Square Test for the r X k Table

The goal of statistical analysis of an X k contingency table is to investigate the
relationship between the row variable and the column variable. Such an investiga-
tion can begin with an inspection of the columnwise or rowwise percentages, as in
Table 10.5.2. One route to further analysis is to ask whether the discrepancies in
percentages are too large to be explained as sampling error. This question can be
answered by a chi-square test. The chi-square statistic is calculated from the familiar
formula
(0 — &)

all cells €

where the sum is over all / = r X k cells of the contingency table, and the expected
frequencies (e’s) are calculated as

(Row total) X (Column total)
e =
Grand total

This method of calculating the e’s can be justified by a simple extension of the
rationale given in Section 10.2. Critical values for the chi-square test are obtained
from Table 9 with

df = (r — 1)(k — 1)

The following example illustrates the chi-square test.

Plover Nesting Let us apply the chi-square test to the plover nesting data of Example
10.5.1. The null hypothesis is

H\: The population distributions of nest locations are the same in the three
years.

This hypothesis can be stated symbolically in conditional probability notation as
follows:

Pr {AF|2004} = Pr {AF|2005} = Pr {AF|2006}
Hy:{ Pr{PD|2004} = Pr {PD|2005} = Pr {PD|2006}
Pr{G[2004} = Pr{G[2005} = Pr {G[2006}

Note that the percentages in Table 10.5.2 are the estimated conditional proba-
bilities; that is,
Pr{AF|2004} = 0.488
Pr{AF|[2005} = 0.302

and so on. We test H( against the nondirectional alternative hypothesis

H 5: The population distributions of nest locations are the not same in all three
years.

Table 10.5.3 shows the observed and expected frequencies.
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10.5.3

Table 10.5.3 Observed and expected frequencies of plover nests

Year
Location 2004 2005 2006 Total
Agricultural field (AF) 21 (18.55) 19 (21.18) 26 (20.27) 66
Prairie dog habitat (PD) 17 (18.83) 38 (27.59) 12 (20.58) 67
Grassland (G) 5 (5.62) 6 (8.24) 9 (6.14) 20
Total 43 63 47 153

From Table 10.5.3, we can calculate the test statistic as

21 — 18.55)2 19 — 21.18)? 9 — 6.14)?
18.55 21.18 6.14
14.09

For these data,r = 3 and k = 3, so that

df=G3-1)3-1) =4

From Table 9 with df = 4, we find that X421,0.01 = 13.28 and )(3,0,001 = 18.47, and
so we have 0.001 < P-value < 0.01. Thus, the chi-square test shows that there is
significant evidence that the nesting location preferences differed across the three
years. ]

Note that Hj in Example 10.5.2 is a compound null hypothesis in the sense
defined in Section 9.4—that is, H, contains more than one independent assertion.
This will always be true for contingency tables larger than 2 X 2, and consequently
for such tables the alternative hypothesis for the chi-square test will always be
nondirectional and the conclusion, if H, is rejected, will be nondirectional. Thus, the
chi-square test will often not represent a complete analysis of an r X k contingency
table.

Two Contexts for r X k Contingency Tables

We noted in Section 10.3 that a 2 X 2 contingency table can arise in two different
contexts. Similarly, an r X k contingency table can arise in the following two
contexts:

1. kindependent samples; a categorical observed variable with r categories

2. One sample; two categorical observed variables—one with k categories and
one with r categories

As with the 2 X 2 table, the calculation of the chi-square statistic is the same for
both contexts, but the statement of hypotheses and conclusions can differ. The fol-
lowing example illustrates the second context.

Hair Color and Eye Color Table 10.5.4 shows the relationship between hair color and
eye color for 6,800 German men.?’ (This is the same study as in Example 10.3.2.)

Let us use a chi square test to test the hypothesis

Hyy: Hair color and eye color are independent.
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Table 10.5.4 Hair color and eye color
Hair color
Brown Black Fair Red
Eye Brown 438 288 115 16
Color Grey or Green 1,387 746 946 53
Blue 807 189 1,768 47

For the data of Table 10.5.4, one can calculate > = 1,074. The degrees of free-
dom for the test are df = (3 — 1)(4 — 1) = 6. From Table 9 we find xZ 00001 = 27-86
.Thus, Hy is overwhelmingly rejected and we conclude that there is extremely strong
evidence that hair color and eye color are associated. m

Exercises 10.5.1-10.5.8

10.5.1 Patients with painful knee osteoarthritis were ran-
domly assigned in a clinical trial to one of five treatments:
glucosamine, chondroitin, both, placebo, or Celebrex, the
standard therapy. One outcome recorded was whether or
not each patient experienced substantial improvement in
pain or in ability to function. The data are given in the
following table.*

SUCCESSFUL OUTCOME
TREATMENT SAMPLE SIZE NUMBER PERCENT
Glucosamine 317 192 60.6
Chondroitin 318 202 63.5
Both 317 208 65.6
Placebo 313 178 56.9
Celebrex 318 214 67.3

(a) Use a chi-square test to compare the success rates at
a = 0.05. (The value of the chi-square statistic is
X: =9.29.)

(b) Verify the value of y? given in part (a).

10.5.2 For a study of free-living populations of the fruit-
fly Drosophila subobscura, researchers placed baited
traps in two woodland sites and one open-ground area.
The numbers of male and female flies trapped in a single
day are given in the table.>!

WOODLAND  WOODLAND
SITE | SITE I OPEN GROUND
Males 89 34 74
Females 31 20 136
Total 120 54 210

(a) Use a chi-square test to compare the sex ratios at the
three sites. Let a = 0.05.

(b) Construct a table that displays the data in a more
readable format, such as the one in Exercise 10.5.1.

10.5.3 In a classic study of peptic ulcer, blood types were
determined for 1,655 ulcer patients. The accompanying
table shows the data for these patients and for an inde-
pendently chosen group of 10,000 healthy controls from
the same city.*

BLOOD TYPE ULCER PATIENTS CONTROLS

0] 911 4,578
A 579 4,219
B 124 890
AB 41 313
Total 1,655 10,000

(a) The value of the chi-square statistic for this contin-
gency table is y2 = 49.0. Carry out the chi-square
testat @ = 0.01.

(b) Construct a table showing the percentage distribu-
tions of blood type for patients and for controls.

(c) Verify the value of y? given in part (a).

10.5.4 The two claws of the lobster (Homarus ameri-
canus) are identical in the juvenile stages. By adulthood,
however, the two claws normally have differentiated into
a stout claw called a “crusher” and a slender claw called a
“cutter.” In a study of the differentiation process, 26 juve-
nile animals were reared in smooth plastic trays and 18
were reared in trays containing oyster chips (which they
could use to exercise their claws). Another 23 animals
were reared in trays containing only one oyster chip.
The claw configurations of all the animals as adults are
summarized in the table.’?
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CLAW CONFIGURATION

RIGHT RIGHT RIGHT

CRUSHER, CUTTER, CUTTER,

LEFT LEFT LEFT
TREATMENT CUTTER CRUSHER CUTTER
Oyster chips 8 9 1
Smooth plastic 2 4 20
One oyster chip 7 9 7

(a) The value of the contingency-table chi-square statis-
tic for these data is y? = 24.35. Carry out the chi-
square test at « = 0.01.

(b) Verify the value of y? given in part (a).
(c) Construct a table showing the percentage distribu-

tion of claw configurations for each of the three
treatments.

(d) Interpret the table from part (c): In what way is claw
configuration related to treatment? (For example, if
you wanted a lobster with two cutter claws, which
treatment would you choose and why?)

10.5.5 A randomized, double-blind, placebo-controlled
experiment was conducted in which patients with
Alzheimer’s disease were given either extract of Ginkgo
biloba (EGb) or a placebo for one year. The change in
each patient’s Alzheimer’s Disease Assessment Scale—
Cognitive subscale (ADAS-Cog) score was measured.
The results are given in the table.* (Note: If the ADAS-
Cog went down, then the patient improved.)

CHANGE IN ADAS-Cog SCORE

(a) Use a chi-square test to compare the prevalence
rates at @ = 0.05. (The value of the chi-square statis-
ticis x2 = 10.26.)

(b) Verify the value of x? given in part (a).

10.5.6 Marine biologists have noticed that the color of
the outermost growth band on a clam tends to be related
to the time of the year in which the clam dies. A biologist
conducted a small investigation of whether this is true for
the species Protothaca staminea. She collected a sample
of 78 clam shells from this species and cross-classified
them according to (1) month when the clam died and
(2) color of the outermost §r0wth band. The data are
shown in the following table.”

COLOR
CLEAR DARK UNREADABLE
February 9 26 9
March 6 25 3
Total 15 51 12

Use a chi-square test to compare the color distributions
for the two months. Let « = 0.10.

10.5.7 A group of patients with a binge-eating disorder
were randomly assigned to take either the experimental
drug fluvoxamine or a placebo in a nine-week long
double-blind clinical trial. At the end of the trial the
condition of each patient was classified into one of four
categories: no response, moderate response, marked
response, or remission. The following table shows a cross
classification of the data.*® Is there statistically significant
evidence, at the 0.10 level, to conclude that there is an
association between treatment group (fluvoxamine ver-
sus placebo) and condition?

—4 -2 -1 +2 +4
OR TO TO TO OR
BETTER -3 +1 +3 WORSE
EGb 22 18 12 7 16
Placebo 10 11 19 11 24
Fluvoxamine
Placebo

Total

NO MODERATE =~ MARKED

RESPONSE ~ RESPONSE ~ RESPONSE  REMISSION TOTAL
15 7 3 15 40
22 7 3 11 43
37 14 6 26
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10.5.8 Patients with coronary artery disease were ran- of death categorized as cardiac, other, or unknown. The
domly assigned to either receive angioplasty plus medical ~ following table shows a cross classification of the data.? s
therapy (n = 1149) or medical therapy alone (n = 1138) there statistically significant evidence, at the 0.10 level, to
in a clinical trial. Over the next several years 85 angioplas- ~ conclude that there is an association between treatment
ty and 95 medical therapy patients died, with cause group (angioplasty versus medical therapy) and outcome?

CARDIAC  OTHER UNKNOWN
DEATH DEATH  CAUSE OF DEATH ALIVE TOTAL

Angioplasty 23 45 17 1,064 | 1,149
Medical therapy 25 51 19 1,043 | 1,138
Total 48 96 36 2,107 2,287

10.6 Applicability of Methods

In this section we discuss guidelines for deciding when to use a chi-square test.

Conditions for Validity

A chi-square test is valid under the following conditions:

1.

Design conditions For the contingency-table chi-square test, it must be appro-
priate to view the data in one of the following ways:

(a) As two or more independent random samples, observed with respect to a
categorical variable; or

(b) As one random sample, observed with respect to two categorical
variables.

For either type of chi-square test, the observations within a sample must be

independent of each other.

Sample size conditions The sample size must be large enough. The critical
values given in Table 9 are only approximately correct for determining the
P-value associated with y2. As a rule of thumb, the approximation is consid-
ered adequate if each expected frequency (e) is at least equal to 5.* (If the
expected frequencies are small and the data form a 2 X 2 contingency table,
then Fisher’s exact test might be appropriate —see optional Section 10.4.)

Form of Hy A generic form of the null hypothesis for the contingency-table
chi-square test may be stated as follows:

Hy: The row variable and the column variable are independent.

Scope of inference As with other statistical tests, if the data arise from an
experiment with random assignment of treatments, as in Example 10.1.1, then
we can draw a causal inference; if the experimental units were drawn at
random from a population, then we can extend the causal inference to that
population. However, if the data arise from an observational study, as in
Example 10.1.2, then a small P-value only allows us to infer that the observed
association is not due to chance, but we cannot rule out other explanations.

*For an r X k table with more than 2 rows and columns, the approximation is adequate if the average expected
frequency is at least 5, even if some of the cell counts are smaller.
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Example
10.6.1

Verification of Design Conditions

To verify the design conditions, we need to identify a population from which the
data may be viewed as a random sample. If the data consist of several samples [situ-
ation 1(a)], then the samples are required to be independent of each other. Failure
to observe this restriction may result in a loss of power. If the design includes any
pairing or matching of experimental units, then the samples would not be independ-
ent. A method of analysis for dependent samples is described in Section 10.8.

As always, bias in the sampling procedure must be ruled out. Moreover, chi-
square methods are not appropriate when complex random sampling schemes such
as cluster sampling or stratified random sampling are used. Finally, there must be no
dependency or hierarchical structure in the design. Failure to observe this restriction
can result in a vastly inflated chance of Type I error (which is usually much more
serious than a loss of power). The following examples show the relevance of check-
ing for dependency in the observations.

Food Choice by Insect Larvae In a behavioral study of the clover root curculio Sitona
hispidulus, 20 larvae were released into each of six petri dishes. Each dish contained
nodulated and nonnodulated alfalfa roots, arranged in a symmetric pattern. (This
experiment was more fully described in Example 1.1.5.) After 24 hours the location

of each larva was noted, with the results shown in Table 10.6.1.8
Table 10.6.1 Food choice by Sitona larvae
Number of larvae

Nodulated Nonnodulated Other
Dish Roots Roots (died, lost, etc.)

1 5 3 12

2 9 1 10

3 6 3 11

4 7 1 12

5 5 1 14

6 14 3 3

Total 46 12 62

Suppose the following analysis is proposed. A total of 58 larvae made a choice;
the observed frequencies of choosing nodulated and nonnodulated roots were 46
and 12, and the corresponding expected frequencies (assuming random choice)
would be 29 and 29; these data yield xy? = 19.93, from which (using a directional
alternative) we find from Table 9 that P-value < 0.00005. The validity of this pro-
posed analysis is highly doubtful because it depends on the assumption that all the
observations in a given dish are independent of each other; this assumption would
certainly be false if (as is biologically plausible) the larvae tend to follow each other
in their search for food.

How, then, should the data be analyzed? One approach is to make the reason-
able assumption that the observations in one dish are independent of those in
another dish. Under this assumption one could use a paired analysis on the six
dishes (n; = 6); a paired ¢ test yields P-value ~ 0.005 and a sign test yields
P-value ~ 0.02. Note that the questionable assumption of independence within
dishes led to a P-value that was much too small. m
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Pollination of Flowers A study was conducted to determine the adaptive significance
of flower color in the scarlet gilia (Ipomopsis aggregata). Six red-flowered plants
and six white-flowered plants were chosen for observation in field conditions; hum-
mingbirds were permitted to visit the flowers, but the other major pollinator, a
moth, was excluded by covering the plants at night. Table 10.6.2 shows, for each
plant, thg:gtotal number of flowers at the end of the season and the number that had
set fruit.

Table 10.6.2 Fruit set in scarlet gilia flowers
Red-flowered plants White-flowered plants
Number  Number  Percent Number Number  Percent
of setting setting of setting setting
flowers fruit fruit flowers fruit fruit
140 26 19 125 21 17
116 11 9 134 17 13
34 0 0 273 81 30
79 9 11 146 38 26
185 28 15 103 17 17
106 1 10 82 24 29
Sum 660 85 863 198

The question of interest is whether the percentage of fruit set is different for
red-flowered than for white-flowered plants. Suppose this question is approached
by regarding the individual flower as the observational unit; then the data could be
cast in the contingency table format of Table 10.6.3.

Table 10.6.3 Fruit set in scarlet gilia flowers
Flower color
Red  White |
Fruitset  Yes 85 198
No 575 665
Total 660 863
Percent setting fruit 13 23

Table 10.6.3 yields y? = 25.0, for which Table 9 gives P-value < 0.0001. Howe-
ver, this analysis is not correct, because the observations on flowers on the same
plant are not independent of each other; they are dependent because the pollinator
(the hummingbird) tends to visit flowers in groups, and perhaps also because the
flowers on the same plant are physiologically and genetically related. The chi-square
test is invalidated by the hierarchical structure in the data.

A better approach would be to treat the entire plant as the observational
unit. For instance, one could take the “Percentage Setting Fruit” column of Table
10.6.2 as the basic observations; applying a ¢ test to the values yields ¢z, = 2.88
(with 0.01 < P-value < 0.02), and applying a Wilcoxon-Mann-Whitney test yields
U, = 32 (with 0.02 < P-value < 0.05). Thus, the P-value from the inappropriate
chi-square analysis is much too small. m
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Example
10.6.3

Power Considerations

In many studies the chi-square test is valid but is not as powerful as a more appro-
priate test. Specifically, consider a situation in which the rows or the columns (or
both) of the contingency table correspond to a rankable categorical variable with
more than two categories. The following is an example.

Physiotherapy A randomized clinical trial was conducted to determine whether
the addition of Saturday physiotherapy sessions (the “treatment”) to the usual
Monday-Friday sessions (the “control”) would benefit patients undergoing
rehabilitation in a hospital. One outcome measure was the destination of a patient
upon being discharged, with the categories being home, low-level residential care
(LLRC), high-level residential care (HLRC), or acute hospital transfer (AHT). The

results are shown in Table 10.6.4.4
Table 10.6.4 Discharge destination for physiotherapy patients
Group

Treatment Control

Home 107 103

Discharge destination LLRC 10 15

HLRC 6 1

AHT 7 13

Total 130 132

A contingency-table chi-square test would be valid to compare treatment and
control, but the test would lack power because it does not use the information con-
tained in the ordering of the discharge destination categories (home is preferred to
LLRC, which is preferred to HLRC, which is preferred to AHT). A related weak-
ness of the chi-square test is that, even if H is rejected, the test does not yield a
directional conclusion such as “the treatment leads to better discharge destinations
than does the control.” ]

Methods are available to analyze contingency tables with rankable row and/or
column variables; such methods, however, are beyond the scope of this book.

Exercises 10.6.1-10.6.3

10.6.1 Refer to the chemotherapy data of Exercise
10.2.10. Are the sample sizes large enough for the
approximate validity of the chi-square test?

10.6.2 In a study of prenatal influences on susceptibility
to seizures in mice, pregnant females were randomly allo-
cated to a control group or a “handled” group. Handled

mice were given sham injections three times during
gestation, while control mice were not touched. The off-
spring were tested for their susceptibility to seizures
induced by a loud noise. The investigators noted that the
response varied considerably from litter to litter. The
accompanying table summarizes the results.*!

RESPONSE TO LOUD NOISE

NUMBER NUMBER
OF OF NO WILD
TREATMENT LITTERS MICE RESPONSE RUNNING SEIZURE
Handled 19 104 23 10 71
Control 20 120 47 13 60
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If these data are analyzed as a 2 X 3 contingency
table, the chi-square statistic is x> = 8.45 and Table 9
gives 0.01 < P-value < 0.02. Is this an appropriate
analysis for this experiment? Explain. (Hint: Does the
design meet the conditions for validity of the chi-square
test?)

10.6.3 In control of diabetes it is important to know
how blood glucose levels change after eating various
foods. Ten volunteers participated in a study to compare
the effects of two foods—a sugar and a starch. A blood
specimen was drawn before each volunteer consumed a
measured amount of food; then additional blood speci-
mens were drawn at 11 times during the next four hours.
Each volunteer repeated the entire test on another oc-
casion with the other food. Of particular concern were
blood glucose levels that dropped below the initial
level; the accompanying table shows the number of such
values.¥

NO. OF VALUES LESS TOTAL NUMBER
FOOD THAN INITIAL VALUE ~ OF OBSERVATIONS
Sugar 26 110
Starch 14 110

Suppose we analyze the given data as a contingency
table. The test statistic would be
, (26 —20)* (14 — 20)
Xs = +
20 20
84 — 90)* (96 — 90)*
L (84907 (%~ 907 _
90 90

4.40

At a = 0.05 we would reject Hy and find that there is suf-
ficient evidence to conclude that blood glucose values
below the initial value occur more often after ingestion of
sugar than after ingestion of starch. This analysis contains
two flaws. What are they? (Hint: Are the conditions for
validity of the test satisfied?)

0.7 Confidence Interval for Difference
between Probabilities

The chi-square test for a 2 X 2 contingency table answers only a limited question:
Do the estimated probabilities—call them p; and p,—differ enough to conclude
that the true probabilities—call them p; and p,—are not equal? A complementary
mode of analysis is to construct a confidence interval for the magnitude of the dif-

ference, (p; — p2).

When we discussed constructing a confidence interval for a single proportion,
p, in Section 9.2, we defined an estimate p, based on the idea of “adding 2 suc-
cesses and 2 failures to the data.” Making this adjustment to the data resulted in
a confidence interval procedure that has good coverage properties. Likewise,
when constructing a confidence interval for the difference in two proportions,
we will define new estimates that are based on the idea of adding 1 observation
to each cell of the table (so that a total of 2 successes and 2 failures are added to

the data).

Consider a 2 X 2 contingency table that can be viewed as a comparison of two
samples, of sizes ny and n,, with respect to a dichotomous response variable. Let the

2 X 2 table be given as

Sample 1
V1 Y2
np—n Ny —

ny np

Sample 2
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We define
~ ntl
p17n1+2
and
~ _»ntl
p27n2+2

We will use the difference in the new values, (p; — p»), to construct a confi-
dence interval for (p; — p,). Like all quantities calculated from samples, the quan-
tity (P; — P») is subject to sampling error. The magnitude of the sampling error can
be expressed by the standard error of (P, — P,), which is calculated from the

following formula:
S - 5 S —7%
SE(s ) = \/pl( Py | Pl = o)

n1+2 l’l2+2

Note that SE(FI, P) is analogous to SE(g,g as described in Section 6.6.
An approximate confidence interval can be based on SE(ﬁl, ) for instance, a
95% confidence interval is

(P1 — P2) = (1.96) SE(5,-5)

Confidence intervals constructed this way have good coverage properties (i.e.,
approximately 95% of all 95% confidence intervals cover the true difference
p1 — p,) for almost any sample sizes n; and n,.* The following example illustrates
the construction of the confidence interval.*

Migraine Headache For the migraine headache data of Example 10.1.1, the sample
sizes are n; = 49 and n, = 26, and the estimated probabilities of substantial reduc-
tion in migraines are

SRV

=~ = 0824
P1 51
~ 16
=_—=10571

The difference between these is
p1 — P2 = 0.824 — 0.571
= 0.253
~ 0.25
Thus, we estimate that the real surgery increases the probability of substantial

reduction in migraines by 0.25, compared to the sham surgery. To set confidence
limits on this estimate, we calculate the standard error as

o 0.824(0.176)  0.571(0.429)
SE(p-F) = 51 g

= 0.1077

*In Section 9.3 we presented a general version of the “add 2 successes and 2 failures” idea, in which the formula
for p depends on the confidence level (95%,90%, etc.). When constructing a confidence interval for a difference
in two proportions, the coverage properties of the interval are best when 1 is added to each cell in the 2 X 2
table, no matter what confidence level is being used.**
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The 95% confidence interval is

0.253 + (1.96)(0.1077)
0253 + 0.211
0.042 < p, — py < 0.464

We are 95% confident that the probability of substantial reduction in mi-
graines is between 0.042 and 0.464 higher with the real surgery than with the sham

surgery.

Relationship to Test The chi-square test for a 2 X 2 contingency table (Section
10.2) is approximately, but not exactly, equivalent to checking whether a confidence
interval for (p; — p,) includes zero. [Recall from Section 7.3 that there is an exact
equivalence between a ¢ test and a confidence interval for (u; — u,).]

Exercises 10.7.1-10.7.6

10.7.1 Elderly patients who had suffered hip fractures
were randomly assigned to receive either a placebo
(n = 1,062) or zolendronic acid (n = 1,065) in a double-
blind clinical trial. During the trial 139 placebo patients
and 92 zolendronic acid patients had new fractures.®’
Let p; and p, represent the probabilities of fracture on
placebo and zolendronic acid, respectively. Construct a
95% confidence interval for (p; — p»).

10.7.2 Refer to the liver tumor data of Exercise 10.2.9.

(a) Construct a 95% confidence interval for (Pr{liver
tumor | germ-free} — Pr{liver tumor| E. coli}).

(b) Interpret the confidence interval from part (a). That
is, explain what the interval tells you about tumor
probabilities.

10.7.3 For women who are pregnant with twins, complete
bed rest in late pregnancy is commonly prescribed in
order to reduce the risk of premature delivery. To test the
value of this practice, 212 women with twin pregnancies
were randomly allocated to a bed-rest group or a control
group. The accompanying table shows the incidence of
preterm delivery (less than 37 weeks of gestation).*

BED REST  CONTROLS
No. of preterm deliveries 32 20
No. of women 105 107

Construct a 95% confidence interval for (Pr{preterm |bed
rest} — Pr{preterm|contro}). Does the confidence interval
suggest that bed rest is beneficial?

10.7.4 Refer to Exercise 10.7.3. The numbers of infants
with low birthweight (2,500 gm or less) born to the
women are shown in the table.

BED REST CONTROLS
No. of low-birthweight babies 76 92
Total no. of babies 210 214

Let p; and p, represent the probabilities of a low-
birthweight baby in the two conditions. Explain why the
above information is not sufficient to construct a confi-
dence interval for (p; — p,).

10.7.5 Refer to the blood type data of Exercise 10.5.3.
Let p; and p, represent the probabilities of type O blood
in the patient population and the control population,
respectively.

(a) Construct a 95% confidence interval for (p; — p,).

(b) Interpret the confidence interval from part (a). That
is, explain what the interval tells you about the differ-
ence in probabilities of type O blood.

10.7.6 In an experiment to treat patients with “general-
ized anxiety disorder,” the drug hydroxyzine was given to
71 patients and 30 of them improved. A group of 70
patients were given a placebo and 20 of them improved.*’
Let p; and p, represent the probabilities of improvement
using hydroxyzine and the placebo, respectively. Con-
struct a 95% confidence interval for (p; — p»).
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10.8 Paired Data and 2 X 2 Tables
(Optional)

In Chapter 8 we considered paired data when the response variable is continuous. In
this section we consider the analysis of paired categorical data.

HIV Transmission to Children A study was conducted to determine a woman’s risk
of transmitting HIV to her unborn child. A sample of 114 HIV-infected women
who gave birth to two children found that HIV infection occurred in 19 of the 114
older siblings and in 20 of the 114 younger siblings.*® These data are shown in
Table 10.8.1.

Table 10.8.1 HIV infection data

Older  Younger
sibling sibling

HIV? Yes 19 20
No 95 94
Total 114 114

At first glance, it might appear that a regular chi-square test could be used to
test the null hypothesis that the probability of HIV infection is the same for older
siblings as for younger siblings. However, as we stated in Section 10.6, for the chi-
square test to be valid the two samples—of 114 older siblings and of 114 younger
siblings—must be independent of each other. In this case the samples are clearly
dependent. Indeed, these are paired data, with a family generating the pair (older
sibling, younger sibling).

Table 10.8.2 presents the data in a different format. This format helps focus
attention on the relevant part of the data.*

Table 10.8.2 HIV infection data shown by pairs
Younger sibling HIV?
Yes No
Older sibling Yes 2 17
HIV? No 18 77

From Table 10.8.2 we can see that there are 79 pairs in which both siblings
have the same HIV status: Two are “yes/yes”" pairs and 77 are “no/no” pairs.
These 79 pairs, which are called concordant pairs, do not help us determine
whether HIV infection is more likely for younger siblings than for older siblings.
The remaining 35 pairs—17 “yes/no” pairs and 18 “no/yes” pairs—do provide in-
formation on the relative likelihood of HIV infection for older and younger sib-
lings. These pairs are called discordant pairs; we will focus on these 35 pairs in our
analysis.

*Note that Table 10.8.2 cannot be derived from Table 10.8.1.
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If the chance of HIV infection is the same for older siblings as it is for younger
siblings, then the two kinds of pairs—“yes/no” and ‘“no/yes” —are equally likely.
Thus, the null hypothesis

Hy: the probability of HIV infection is the same for older
siblings as it is for younger siblings

is equivalent to

1
H,: among discordant pairs, Pr(“yes/no”) = Pr(“no/yes”) = ) ]

McNemar’s Test

The hypothesis that discordant pairs are equally likely to be “yes/no” or “no/yes”
can be tested with the chi-square goodness-of-fit test developed in Section 9.4.
This application of the goodness-of-fit test is known as McNemar’s test and has a
particularly simple form.* Let n1; denote the number of “yes/yes” pairs, nq, the
number of “yes/no” pairs, n,; the number of “no/yes” pairs, and n,, the number of
“no/no” pairs, as shown in Table 10.8.3. If H, is true, the expected number of
“yes/no” pairs is w, as is the expected number of “no/yes” pairs. Thus,

the test statistic is

(n1z + n21)\? (n12 + nyp)\?
nyp — f ny1 — f

= +
(n1p + ny) (nyp + ny)

2 2

2
s

X

which simplifies to

2 (nip — ’121)2

Xs =
np t ny

The distribution of y? under the null hypothesis is approximately a y* distribu-
tion with 1 degree of freedom.

Table 10.8.3 A general table of
paired proportion data

Yes No
Yes ni ni
No na1 npo

*The null hypothesis tested by McNemar’s test can also be tested by using the binomial distribution. The null
hypothesis states that among discordant pairs, Pr(“yes/no”) = Pr(“no/yes”) = 1/2. Thus, under the null hy-
pothesis, the number of “yes/no” pairs has a binomial distribution with n = the number of discordant pairs and
p = 0.5.
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10.8.2 ny; = 18.Thus,

HIV Transmission to Children For the data given in Example 10.8.1, n;, = 17 and

(17 — 18)2

X2 =——"—=10.0286

17 + 18

From Table 9 we see that the P-value is greater than 0.20. (Using a computer
gives P-value = 0.87.) The data are very much consistent with the null hypothesis
that the probability of HIV infection is the same for older siblings as it is for

younger siblings.

Exercises 10.8.1-10.8.4

10.8.1 As part of a study of risk factors for stroke, 155
women who had experienced a hemorrhagic stroke
(cases) were interviewed. For each case, a control was
chosen who had not experienced a stroke; the control was
matched to the case by neighborhood of residence, age,
and race. Each woman was asked whether she used
oral contraceptives. The data for the 155 pairs are dis-
played in the table. “Yes” and “No” refer to use of oral
contraceptives.*’

CASE
NO YES
Control No 107 30
Yes 13 5

To test for association between oral contraceptive use
and stroke, consider only the 43 discordant pairs (pairs
who answered differently) and test the hypothesis that a
discordant pair is equally likely to be “yes/no” or
“nol/yes.” Use McNemar’s test to test the hypothesis that
having a stroke is independent of use of oral contracep-
tives against a nondirectional alternative at « = 0.05.

10.8.2 Example 10.8.1 referred to a sample of HIV-
infected women who gave birth to two children. One of
the outcomes that was studied was whether the gesta-
tional age of the child was less than 38 weeks; this infor-
mation was recorded for 106 of the families. The data for
this variable are shown in the following table. Analyze
these data using McNemar’s test. Use a nondirectional
alternative and let « = 0.10.

YOUNGER SIBLING < 38 WEEKS?
YES NO

Older sibling Yes 26 5
< 38 weeks? No 21 54

10.8.3 A study of 85 patients with Hodgkin’s disease
found that 41 had had their tonsils removed. Each patient
was matched with a sibling of the same sex. Only 33 of the
siblings had undergone tonsillectomy. The data are shown
in the following table.’® Use McNemar’s test to test the
hypothesis that “yes/no” and “no/yes” pairs are equally
likely. Previous research had suggested that having a ton-
sillectomy is associated with an increased risk of
Hodgkin’s disease; thus, use a directional alternative. Let
a = 0.05.

SIBLING
TONSILLECTOMY?
YES NO
Hodgkin’s patient Yes 26 15
tonsillectomy No 7 37

10.8.4 In a study of the mating behavior of Gryllus
campestris, pairs of female crickets were placed in a
plexiglass arena with a single male cricket. There were 54
cases in which the females fought; these resulted in 42
cases in which the winning female copulated with the
male, 8 cases in which the losing female copulated with
the male, and 4 cases that ended with no copulation. The
data are summarized in the following table.>! Use
McNemar’s test to test the hypothesis that winners and
losers are equally likely to copulate. Use an appropriate
directional alternative and let « = 0.05.

WINNERS

COPULATE YES NO
Losers Yes 0 8
No 42 4
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10.9 Relative Risk and the Odds Ratio (Optional)

It is quite common to test the null hypothesis that two population proportions, p;
and p,, are equal. A chi-square test, based on a2 X 2 table, is often used for this pur-
pose. A confidence interval for (p; — p,) provides information about the magnitude
of the difference between p; and p,. In this section we consider two other measures
of dependence: the relative risk and the odds ratio.

Relative Risk

Sometimes researchers prefer to compare probabilities in terms of their ratio, rather
than their difference. When the outcome event is deleterious (such as having a heart
attack or getting cancer) the ratio of probabilities is called the relative risk, or the
risk ratio. The relative risk is defined as p;/p,. This measure is widely used in studies
of human health. The following is an example.

Smoking and Lung Cancer The health histories of 11,900 middle-aged men were
tracked over many years. During the study 126 of the men developed lung cancer,
including 89 men who were smokers and 37 men who were former smokers.
Table 10.9.1 shows the data.>?

Table 10.9.1 Incidence of lung cancer and smoking status
Smoking history
Smoker Former smoker
Lung cancer? Yes 89 37
No 6,063 5,711
Total 6,152 5,748

The probabilities of primary interest are the columnwise conditional probabilities:
p1 = Pr{lung cancer |smoker}
p> = Pr{lung cancer |former smoker}

The estimates of these from the data are

.89

P1 = ¢ 1sy = 001447 = 0.014
.37

P2 = yg = 0.00644 ~ 0.006

The estimated relative risk is

P 0.01447
Py 0.00644

= 2247 =~ 22

Thus, we estimate that the risk (i.e., the conditional probability) of developing
lung cancer is about 2.2 times as great for smokers as for former smokers. (Of
course, because this is an observational study, we would not be justified in conclud-
ing that smoking causes lung cancer.) [
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The Odds Ratio

Another way to compare two probabilities is in terms of odds. The odds of an event
E is defined to be the ratio of the probability that £ occurs to the probability that E
does not occur:

Pr{E}

fE =————
odds o 1 — Pr{E]

For instance, if the probability of an event is 1/4, then the odds of the event are

1/4
34 = 1/3 or 1:3. As another example, if the probability of an event is 1/2, then the

odds of the event are % = lorl:1.

The odds ratio is simply the ratio of odds under two conditions. Specifically, sup-
pose that p; and p, are the conditional probabilities of an event under two different
conditions. Then the odds ratio, which we will denote by 6 (“theta”), is defined as
follows:

P1
_ 1-p
P2
1-p
If the estimated probabilities p; and p, are calculated from a 2 X 2 contingency
table, the corresponding estimated odds ratio, denoted 6, is calculated as

0

P
L—p
P

A

1-=p

é:

We illustrate with an example.

Smoking and Lung Cancer From the data of Example 10.9.1, we estimate the odds of
developing lung cancer as follows:

R ~0.01447
odds = 1= 001447 0.01468 among smokers
A 0.00644
odds = 1 = 000644 0.00648 among former smokers
The estimated odds ratio is
~ 0.01468
= = 2265 = 2.
b 0.00648 65 3
Thus, we estimate that the odds of developing lung cancer are about 2.3 times as
great for smokers as for former smokers. [

Odds Ratio and Relative Risk

The odds ratio measures association in an unfamiliar way; the relative risk is a more nat-
ural measure. Fortunately, in many applications the two measures are approximately
equal. In general the relationship between the odds ratio and the relative risk is given by
1—-p

P

odds ratio = relative risk X
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Notice that if p; and p, are small, then the relative risk is approximately equal to
the odds ratio. We illustrate with the smoking and lung cancer data.

Smoking and Lung Cancer For the data in Table 10.9.1 we found that the estimated rel-
ative risk of lung cancer is

estimated relative risk = 2.247
and the estimated odds ratio is
6 = 2.265

These are approximately equal because the outcome of interest (developing
lung cancer) is rare, so that p; and p, are small. =

Advantage of the Odds Ratio

Both the relative risk p;/p, and the difference (p; — p,) are easier to interpret than
the odds ratio. Why, then, is the odds ratio used at all? One important advantage of
the odds ratio is that, in certain kinds of studies, the odds ratio can be estimated
even though p; and p, cannot be estimated. To explain this property, we must first
discuss the question of estimability of conditional probabilities in contingency
tables.

In a 2 X 2 contingency table, the conditional probabilities can be defined by
rows or by columns. Whether these probabilities can be estimated from the
observed data depends on the study design. The following example illustrates this
point.

Smoking and Lung Cancer In studying the relationship between smoking and lung
cancer, the conditional probabilities of primary interest are

p1 = Pr{lung cancer|smoker}
and

p» = Pr{lung cancer |former smoker}

These are columnwise probabilities in a table like Table 10.9.1. One could, how-
ever, also consider the following rowwise conditional probabilities:

p1 = Pr{smoker|lung cancer}
and

p5> = Pr{smoker|no lung cancer}

(Of course, pj and p; are not particularly meaningful biologically.) From the
study described in Example 10.9.1, that is, a single sample of size n = 11,900
observed with respect to smoking status and lung cancer, one can estimate not
only p; and p, but also p; and p5. However, there are other important study
designs that do not provide enough information to estimate all these conditional
probabilities. For example, suppose that a study is conducted by choosing a group
of 500 smokers and a group of 500 former smokers and then observing how
many of them develop lung cancer. This kind of study is called a prospective study
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or cohort study. Such a study might produce the fictitious but realistic data of
Table 10.9.2.

Table 10.9.2 Fictitious data for cohort study of
smoking and lung cancer mortality

Smoking history
Smoker  Former smoker
Lung cancer? Yes 7 3
No 473 497
Total 500 500

The data of Table 10.9.2 can be viewed as two independent samples. From the
data we can estimate the conditional probabilities of lung cancer in the two popula-
tions (smokers and former smokers):

A 7 A 3
=_——=0.014 = —— = 0.006
Pr="500 P2 500

By contrast, the rowwise probabilities p and p; cannot be estimated from Table
10.9.2. Because the relative numbers of smokers and former smokers were predeter-
mined by the design of the study (n; = 500 and n, = 500), the data contain no
information about the prevalence of smoking, and therefore no information about
the population values of

Pr{smoker |lung cancer} and Pr{smoker | no lung cancer}

Table 10.9.2 was generated by fixing the column totals and observing the row
variable. Consider now the reverse sort of design. Suppose we choose 500 men who
died from lung cancer and 500 men who did not die from lung cancer and we then
determine the smoking histories of the men. This design is called a case-control
design. Such a design might generate the fictitious but realistic data of Table 10.9.3.

Table 10.9.3 Fictitious data for cohort study of smoking
and lung cancer mortality

Smoking history
Smoker Former smoker Total
Lung cancer? Yes 273 227 500
No 173 327 500

From Table 10.9.3 we can estimate the rowwise conditional probabilities

273 -
Pl =555 = 0546 = 0.5
W 173 5

Ph = 55 = 0346 = 0.35

However, from the data in Table 10.9.3 we cannot estimate the columnwise con-
ditional probabilities p; and p,: Because the row totals were predetermined by
design, the data contain no information about Pr{lung cancer |smoker} and Pr{lung
cancer |former smoker}. [
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The preceding example shows that, depending on the design, a study may not
permit estimation of both columnwise probabilities p; and p, and rowwise probabil-
ities p] and p5. Fortunately, the odds ratio is the same whether it is determined
columnwise or rowwise. Specifically,

)4 PT
_1-p _1-p
22 P
I=p 1 - p>

0

Because of this relationship, the odds ratio 6 can be estimated by estimating p,
and p, or by estimating p; and p5. This fact has important applications, especially for
case-control studies, as illustrated by the following example.

Smoking and Lung Cancer To characterize the relationship between smoking and lung
cancer mortality, the columnwise probabilities p; and p, are more biologically
meaningful than the rowwise probabilities p] and p5. If we investigate the relation-
ship using a case-control design, neither p; nor p, can be estimated from the data.
(See Example 10.9.4.) However, the odds ratio can be estimated from the data. For
instance, from Table 10.9.3 we obtain

Ak
P1
~ 1-p]
0 Tpl
P2
1-p;

0.546

1 — 0.546
= o346 2265 ~ 2.27

1 — 0.346

We can interpret this odds ratio as follows: We know that the outcome event—
developing lung cancer —is rare, and so we know that the odds ratio is approximately
equal to the relative risk, p;/p,. We therefore estimate that the risk of lung cancer is
about 2.3 times as great for smokers as for former smokers. [

There is an easier way to compute the odds ratio for a 2 X 2 contingency
table. For a general 2 X 2 table, let n1; denote the number of observations in the
first row and the first column. Likewise, let 71, be the number of observations in
the first row and second column, and so on. The general 2 X 2 table then has
the form

ni nia

n21 n

The estimated odds ratio from the table is

A NNy
0=—"—
n12n7
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Smoking and Lung Cancer From the data in Table 10.9.1, we can calculate the esti-
mated odds ratio as
89 X 5,711

The case-control design is often the most efficient design for investigating rare
outcome events, such as rare diseases. Although Table 10.9.3 was constructed assum-
ing that the two samples, cases and controls, were chosen independently, a more
common design is to incorporate matching of cases and controls with respect to
potential confounding factors (for example, age). As we have seen, by taking advan-
tage of the odds ratio, one can estimate the relative risk from a case-control study of
arare event even though one cannot estimate the risks p; and p, separately.

If the odds ratio (or the relative risk) is equal to 1.0, then the odds (or the risk)
are the same for both of the groups being compared. In the smoking and lung can-
cer data of Table 10.9.1 the calculated odds ratio was greater than 1.0, indicating that
the odds of lung cancer are greater for smokers than for former smokers. Notice
that we could have focused attention on the odds of not getting lung cancer. In this
case, the odds ratio would be /ess than 1.0, as shown in Example 10.9.7.

Smoking and Lung Cancer Suppose we rearrange the data in Table 10.9.1 by putting
lung cancer in the second row and not getting lung cancer in the first row:

Smoking History
Smoker Former Smoker
Lung cancer? No 6,063 5,711
Yes 89 37
Total 6,152 5,748

In this case the odds ratio is the odds of not getting lung cancer for a smoker
divided by the odds of not getting lung cancer for a former smoker. We can calculate
the estimated odds ratio as
~ 6,063 X 37
© 5711 X 89

>

= 0.44

1
This is the reciprocal of the odds ratio calculated in Example 10.9.6: 527 = 0.44.

The fact that the odds ratio is less than 1.0 means that the event (being free of lung
cancer) is less likely for smokers than for former smokers. ]

Confidence Interval for the Odds Ratio

In Chapter 6 we discussed confidence intervals for proportions, which are of the
+2
form p + z,,SEp, where p'= y7+4 In particular, a 95% confidence interval for p
n

is given by p + zopsSEp. Such confidence intervals are based on the fact that for
large samples the sampling distribution of P is approximately normal (according to
the Central Limit Theorem).
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In a similar way, we can construct a confidence interval for an odds ratio. One
problem is that the sampling distribution of § is not normal. However, if we take
the natural logarithm of 6, then we have a distribution that is approximately
normal. Hence, we construct a confidence interval for 6 by first finding a confi-
dence interval for In(6) and then transforming the endpoints back to the original
scale.

In order to construct a confidence interval for In(6), we need the standard error
of In(9). The formula for the standard error of In() is given in the box.

Standard Error of In(f)

1 1 1 1
SEpn@ =/ +— +—+—
nyp nyp Ny Ny

A 95% confidence interval for In(6) is given by In(f) + (1.96) SEjy5). We then
exponentiate the two endpoints of the interval to get a 95% confidence interval
for 6. Intervals with other confidence coefficients are constructed analogously; for
instance, for a 90% confidence interval one would use z( 5 (1.645) instead of z( 5
(1.960). The process for finding a confidence interval for 6 is summarized in the
following box.*

— Confidence Interval for 6
To construct a 95% confidence interval for 0,
1. Calculate In(6).

2. Construct a confidence interval for In(6) using the formula In() + (1.96) SEin9)-
3. Exponentiate the endpoints to get a confidence interval for 6.

This process is illustrated in the following examples.

Smoking and Lung Cancer From the data in Table 10.9.1, the estimated odds ratio is

~ 89 % 5711
0= 37 X 6063 2.27

Thus, In(d) = In(2.27) = 0.820.

1 1 1 1
The standard error is given by SE,,4) = \/ 2 + 37 + 6063 + S 0.1965.

A 95% confidence interval for In(0) is 0.820 + (1.96)(0.1965) or 0.820 + 0.385.
This interval is (0.435, 1.205).

To get a 95% confidence interval for 6, we evaluate e** = 1.54 and
e!2% = 324, Thus, we are 95% confident that the population value of the odds ratio
is between 1.54 and 3.24. [

*A confidence interval for the relative risk can be found in a suitably modified manner for those situations in
which the relative risk can be estimated from the data.
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10.9.9

Heart Attacks and Aspirin During the Physician’s Health Study, 11,037 physicians
were randomly assigned to take 325 mg of aspirin every other day; 104 of them had
heart attacks during the study. Another 11,034 physicians were randomly assigned
to take a placebo; 189 of them had heart attacks. These data are shown in
Table 10.9.4.%% The odds ratio for comparing the heart attack rate on aspirin to the
heart attack rate on placebo is
j— 18910933 o)
104 X 10845
Thus, In(d) = In(1.832) = 0.605.
The standard error is

= 0.123.

I \/ 11 1 1
SEnd = \[1g9 * T4 " 10845 © 10933

A 95% confidence interval for In(#) is 0.605 £ (1.96)(0.123) or 0.605 + 0.241.
This interval is (0.364, 0.846).

To get a 95% confidence interval for 6, we evaluate e**** = 1.44 and
e84 = 2 33 Thus, we are 95% confident that the population value of the odds ratio
is between 1.44 and 2.33. Because heart attacks are relatively rare in this data set,
the relative risk is nearly equal to the odds ratio. Thus, we can say that we are 95%
confident that the probability of a heart attack is about 1.44 to 2.33 times greater

when taking the placebo than when taking aspirin. [
Table 10.9.4 Heart attacks on placebo
and on aspirin
Placebo Aspirin
Heart attack 189 104
No heart attack 10,845 10,933
Total 11,034 11,037
Exercises 10.9.1-10.9.8
10.9.1 For each of the following tables, calculate (i) the (b) 15 7
relative risk and (ii) the odds ratio.
338 82
a
(@) 25 23
492 614 10.9.3 Hip dysplasia is a hip socket abnormality that
affects many large breed dogs. A review of medical records
of dogs seen at 27 veterinary medical teaching hospitals
(b) found that hip dysplasia was more common in Golden
12 8 Retrievers than in Border Collies; the data are shown in
93 84 the following table.’* Calculate the relative risk of hip dys-

10.9.2 For each of the following tables, calculate (i) the
relative risk and (ii) the odds ratio.

(a)

14
322

16
412

plasia for Golden Retrievers compared to Border Collies.

GOLDEN RETRIEVER BORDER COLLIE

Hip Yes 3,995 221
dysplasia? No 42,946 5,007
Total 46,941 5,228




10.9.4 Consider the data from Exercise 10.9.3.
(a) Calculate the sample value of the odds ratio.

(b) Construct a 95% confidence interval for the popula-
tion value of the odds ratio.

(c) Interpret the confidence interval from part (b) in the
context of this setting.

10.9.5 As part of the National Health Interview Survey,
occupational injury data were collected on thousands of
American workers. The table below summarizes part of
these data.’

SELF-EMPLOYED EMPLOYED BY OTHERS

Injured? Yes 210 4,391
No 33,724 421,502
Total 33,934 425,893

(a) Calculate the sample value of the odds ratio.

(b) According to the odds ratio, are self-employed work-
ers more likely, or less likely, to be injured than per-
sons who work for others?

(c) Construct a 95% confidence interval for the popula-
tion value of the odds ratio.

(d) Interpret the confidence interval from part (b) in the
context of this setting.

10.9.6 Many over-the-counter decongestants and
appetite suppressants contain the ingredient phenypro-
panolamine. A study was conducted to investigate
whether this ingredient is associated with strokes. The
study found that 6 of 702 stroke victims had used an
appetite suppressant containing phenypropanolamine,
compared to only 1 of 1,376 subjects in a control group.
The following table summarizes these data.>
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STROKE NO STROKE

Appetite suppressant? Yes 6 1
No 696 1,375
Total 702 1,376

(a) Calculate the sample value of the odds ratio.

(b) Construct a 95% confidence interval for the popula-
tion value of the odds ratio.

(c) Upon hearing of these data, some scientists called
the study “inconclusive” because the numbers of
users of appetite suppressants containing phenypro-
panolamine (7 total: 6 in one group and 1 in the
other) are so small. What is your response to these
scientists?

10.9.7 Two treatments, heparin and enoxaparin, were
compared in a double-blind, randomized clinical trial of
patients with coronary artery disease. The subjects can be
classified as having a positive or negative response to
treatment; the data are given in the following table.”’

HEPARIN ENOXAPARIN

Outcome Negative 309 266
Positive 1,255 1,341
Total 1,564 1,607

(a) Calculate the sample value of the odds ratio.

(b) Construct a 95% confidence interval for the popula-
tion value of the odds ratio.

(c) Interpret the confidence interval from part (b) in the
context of this setting.

10.9.8 Consider the data from Exercise 10.7.1. Given
that there were 139 hip fractures in 1,062 placebo
patients and 92 hip fractures in 1,065 zolendronic acid
patients, construct a 95% confidence interval for the pop-
ulation value of the odds ratio.*

10.10 Summary of Chi-Square Test

The chi-square test is often applied to contingency tables; it is summarized here.

Null hypothesis:

i

— Summary of Chi-Square Test for a Contingency Table

Hjy: Row variable and column variable are independent

Calculation of expected frequencies:

_ (Row Total) X (Column Total)

Grand Total
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Test statistic:

counts are smaller.

Null distribution (approximate):
x*distribution with df = (r — 1)(k — 1)

where r is the number of rows and k is the number of columns in the contin-
gency table. This approximation is adequate if ¢; = 5 for every cell. If r and k
are large, the condition that e; = 5 is less critical and the y? approximation is
adequate if the average expected frequency is at least 5, even if some of the cell

The observations must be independent of one another. If paired data are
collected for a2 X 2 table, then McNemar’s test is appropriate (Section 10.8).

2 (0; — ei)z
2 = Ao

all cells €

X

Supplementary Exercises 10.5.1-10.5.19

(Note: Exercises preceded by an asterisk refer to option-
al sections.)

10.S.1 In the Women’s Health Initiative Dietary Modifi-
cation Trial women were randomly assigned to an inter-
vention or a control group. The intervention included
counseling sessions designed to reduce fat intake and to
increase consumption of fruits and vegetables. Over six
years data were collected on coronary heart disease
(CHD); results are shown in the table.”® Do the data pro-
vide evidence that the intervention makes a difference?
The value of the chi-square statistic for this contingency
table is x? = 0.69. Carry out the chi-square test against a
nondirectional alternative at « = 0.10.

GROUP
INTERVENTION  CONTROL
CHD? Yes 1,000 1,549 2,549
No 18,541 27,745 46,286
Total 19,541 29,294 48,835

10.5.2 Use the data from Exercise 10.S.1 to construct a
95% confidence interval for (Pr{CHD |intervention}
— Pr {CHD |control}).

10.S.3 As part of a study of environmental influences on
sex determination in the fish Menidia, eggs from a single
mating were divided into two groups and raised in either

a warm or a cold environment. It was found that 73 of 141
offspring in the warm environment and 107 of 169 off-
spring in the cold environment were females.”® In each of
the following chi-square tests, use a nondirectional alter-
native and let @ = 0.05.

(a) Test the hypothesis that the population sex ratio is
1:1 in the warm environment.

(b) Test the hypothesis that the population sex ratio is
1:1 in the cold environment.

(c) Test the hypothesis that the population sex ratio is
the same in the warm as in the cold environment.

(d) Define the population to which the conclusions
reached in parts (a)—(c) apply. (Is it the entire genus
Menidia?)

10.S.4 The cilia are hairlike structures that line the nose
and help to protect the respiratory tract from dust and
foreign particles. A medical team obtained specimens of
nasal tissue from nursery school children who had viral
upper respiratory infections, and also from healthy chil-
dren in the same classroom. The tissue was sectioned and
the cilia were examined with a microscope for specific
defects, with the results shown in the accompanying
table.” The data show that the percentage of defective
cilia was much higher in the tissue from infected children
(15.7% versus 3.1%). Would it be valid to apply a chi-
square test to compare these percentages? If so, do it. If
not, explain why not.

CILIA WITH DEFECTS

NUMBER OF  TOTAL NUMBER

CHILDREN OF CILIA COUNTED  NUMBER  PERCENT
Control 7 556 17 31
Respiratory infection 22 1,493 235 15.7




10.5.5 A group of mountain climbers participated in a
trial to investigate the usefulness of the drug acetazo-
lamide in preventing altitude sickness. The climbers were
randomly assigned to receive either drug or placebo
during an ascent of Mt. Rainier. The experiment was
supposed to be double-blind, but the question arose
whether some of the climbers might have received clues
(perhaps from the presence or absence of side effects or
from a perceived therapeutic effect or lack of it) as to
which treatment they were receiving. To investigate this
possibility, the climbers were asked (after the trial was
over) to guess which treatment they had received.®! The
results can be cast in the following contingency table, for
which y? = 5.07:

TREATMENT RECEIVED

DRUG PLACEBO
Guess Correct 20 12
Incorrect 11 21

Alternatively the same results can be rearranged in the
following contingency table, for which y? = 0.01:

TREATMENT RECEIVED

DRUG PLACEBO
Guess Drug 20 21
Placebo 11 12

Consider the null hypothesis

Hy: The blinding was perfect (the climbers received
no clues).

Carry out the chi-square test of H|, against the alterna-
tive that the climbers did receive clues. Let o = 0.05.
(You must decide which contingency table is relevant
to this question.) (Hint: To clarify the issue for your-
self, try inventing a fictitious data set in which most of
the climbers have received strong clues, so that we
would expect a large value of x?; then arrange your
fictitious data in each of the two contingency table
formats and note which table would yield a larger value

of Xf)

*10.5.6 Desert lizards (Dipsosaurus dorsalis) regulate
their body temperature by basking in the sun or moving
into the shade, as required. Normally the lizards will
maintain a daytime temperature of about 38 °C. When
they are sick, however, they maintain a temperature
about 2° to 4° higher—that is, a “fever.” In an experi-
ment to see whether this fever might be beneficial,
lizards were given a bacterial infection; then 36 of the an-
imals were prevented from developing a fever by keep-
ing them in a 38° enclosure, while 12 animals were kept
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at a temperature of 40°. The following table describes
the mortality after 24 hours.®> How strongly do these re-
sults support the hypothesis that fever has survival
value? Use Fisher’s exact test against a directional alter-
native. Let @ = 0.05.

38° 40°
Died 18 2
Survived 18 10
Total 36 12

10.5.7 Consider the data from Exercise 10.S.6. Analyze
these data with a chi-square test. Let « = 0.05.

10.5.8 In a randomized clinical trial, 154 women with
breast cancer were assigned to receive chemotherapy.
Another 164 women were assigned to receive chemo-
therapy combined with radiation therapy. Survival data
after 15 years are given in the following table.®® Use
these data to conduct a test of the null hypothesis that
type of treatment does not affect survival rate. Let
a = 0.05.

CHEMOTHERAPY = CHEMOTHERAPY AND

ONLY RADIATION THERAPY
Died 78 66
Survived 76 98
Total 154 164

*10.5.9 Refer to the data in Exercise 10.S.8.
(a) Calculate the sample odds ratio.

(b) Find a 95% confidence interval for the population
value of the odds ratio.

10.S.10 Two drugs, zidovudine and didanosine, were
tested for their effectiveness in preventing progression of
HIV disease in children. In a double-blind clinical trial,
276 children with HIV were given zidovudine, 281 were
given didanosine, and 274 were given zidovudine plus
didanosine. The following table shows the survival data
for the three groups.®* Use these data to conduct a test of
the null hypothesis that survival and treatment are inde-
pendent. Let @ = 0.10.

ZIDOVUDINE AND

ZIDOVUDINE DIDANOSINE DIDANOSINE
Died 17 7 10
Survived 259 274 264
Total 276 281 274
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10.S.11 The blood types of malaria patients at a clinic in
India were compared with those obtained in a sample of
visitors to a nearby hospital. The data are shown in the
following table.%> Use these data to conduct a test of the
null hypothesis that blood type is independent of con-
tracting malaria. Let &« = 0.05.

A B O AB TOTAL
Malaria cases 138 199 106 33 476

229 535 428 96 1,300

Controls

10.S.12 The habitat selection behavior of the fruitfly
Drosophila subobscura was studied by capturing flies
from two different habitat sites. The flies were marked
with colored fluorescent dust to indicate the site of cap-
ture and then released at a point midway between the
original sites. On the following two days, flies were recap-
tured at the two sites. The results are summarized in the
table.®® The value of the chi-square statistic for this con-
tingency table is y; = 10.44. Test the null hypothesis of
independence against the alternative that the flies prefer-
entially tend to return to their site of capture. Let
a = 0.01.

SITE OF
RECAPTURE
| Il
Site of original capture 1|78 56
Ir| 33 58

10.S.13 In the garden pea Pisum sativum, seed color can
be yellow (Y) or green (G), and seed shape can be round
(R) or wrinkled (W). Consider the following three
hypotheses describing a population of plants:

3
H((l))Pr{l} = Z
3
HY: PriR} = Z

HY: Pr{R|Y} = Pr{R|G}

The first hypothesis asserts that yellow and green plants
occur in a 3:1 ratio; the second hypothesis asserts that
round and wrinkled plants occur in a 3:1 ratio, and the
third hypothesis asserts that color and shape are inde-
pendent. (In fact, for a population of plants produced by
a certain cross—the dihybrid cross—all three hypotheses
are known to be true.)

Suppose a random sample of 1,600 plants is to be
observed, with the data to be arranged in the following
contingency table:

COLOR
y G

Shape R

1,600

Invent fictitious data sets as specified, and verify each
answer by calculating the estimated conditional pro-
babilities. (Hint: In each case, begin with the marginal
frequencies.)

a) A data set that agrees perfectly with HG), H®, and

(a) g p y 0 0
HY.

(b) A data set that agrees perfectly with H(}) and H@
but not with H}).

(c) A data set that agrees perfectly with H@) but not
with H) or H}).

*10.5.14 A study of 36,080 persons who had heart
attacks found that men were more likely to survive than
were women. The following table shows some of the data
collected in the study.®’

MEN  WOMEN

Survived at Yes (25,339 8914
least 24 hours? No 1,141 686
Total 26,480 9,600

(a) Calculate the odds ratio for comparing survival of
men to survival of women.

(b) Calculate a 95% confidence interval for the popula-
tion value of the odds ratio.

(c) Does the odds ratio give a good approximation to
the relative risk for these data? Why or why not?

*10.S.15 In the study described in Exercise 10.9.6, one of
the variables measured was whether the subjects had
used any products containing phenypropanolamine. The
odds ratio was calculated to be 1.49, with stroke victims
more likely than the control subjects to have used a prod-
uct containing phenypropanolamine.®® A 95% confi-
dence interval for the population value of the odds ratio
is (0.84, 2.64). Interpret this confidence interval in the
context of this setting.

10.S.16 (Computer exercise) In a study of the effects of
smoking cigarettes during pregnancy, researchers exam-
ined the placenta from each of 58 women after childbirth.
They noted the presence or absence (P or A) of a partic-
ular placental abnormality—atrophied villi. In addition,
each woman was categorized as a nonsmoker (N), mod-
erate smoker (M), or heavy smoker (H). The following
table shows, for each woman, an ID number (#) and the
results for smoking (S) and atrophied villi (V).
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# S Vv # S V. # S Vv # S Vv
1 N Aj16 H P |31 M A|46 M A
2 M A|17 H P |32 M A |47 H P
3 N A|18 N A3 N A|48 H P
4 M A|19 M P |34 N A |49 H A
5 M A|20 N P |3 N A|50 N P
6 M P |21 M A|3 H P |51 N A
7 H P |22 H A|3 N A|52 M P
8§ N A|22 M P |3 H P |53 M A
9 N A|24 N A|39 H P |54 H P
100 M P |25 N P |40 N A |5 H A
1 N A|20 N A4 M A |5 M P
12 N P |27 N A|42 N A |57 H P
3 H P |28 M P |43 H A |58 H P
4 M A|29 N A4 M A
15 M P |30 N A4 M P

(a) Test for a relationship between smoking status and
atrophied villi. Use a chi-square test at @ = 0.05.

(b) Prepare a table that shows the total number of
women in each smoking category, and the number
and percentage in each category who had atrophied
villi.

(c) What pattern appears in the table of part (b) that is
not used by the test of part (a)?

*10.S.17 Researchers studied the cellular telephone
records of 699 persons who had automobile accidents.
They determined that 170 of the 699 had made a cellular
telephone call during the 10-minute period prior to their
accident; this period is called the hazard interval. There
were 37 persons who had made a call during a correspon-
ding 10-minute period on the day before their accident;
this period is called the control interval. Finally, there
were 13 who made calls both during the hazard interval
and the control interval.®” Do these data indicate that use
of a cellular telephone is associated with an increase in
accident rate? Analyze these data using McNemar’s test.
Use a directional alternative and let & = 0.01.

CALL DURING
CONTROL INTERVAL?

YES NO

Call during Yes 13 157
hazard interval? No 24 505

10.S.18 Prior to an influenza season subjects were ran-
domly assigned to receive either a flu vaccine or a place-
bo. During that season there were 28 cases of the flu
among 813 vaccine recipients and 35 cases of the flu
among the 325 subjects who were given the placebo.”’ Do
these data indicate that the vaccine was effective?
Conduct an appropriate test using a directional alterna-
tive with @ = 0.05.

*10.5.19 Refer to the data in Exercise 10.S.18.
(a) Calculate the sample odds ratio.

(b) Find a 95% confidence interval for the population
value of the odds ratio.

10.5.20 Consider Exercise 9.S.18. The romantic partners
of the 36 men discussed in Exercise 9.S.18 were also test-
ed, in the same manner as the men (i.e., they were blind-
folded and asked to identify their partner by touching the
backs of the hands of three men, one of whom was their
partner). Among the women, 25 were successful and
11 were not. Are these data significant evidence for the
hypothesis that men and women differ in their ability to
identify their partners?

Conduct a test, using & = 0.05; use a nondirectional
alternative.



